2.1 - Properties of Rational Expressions

A rational expression is ...
an algebraic fraction with a numerator and a denominator that are polynomials
e.g. $\frac{1}{x}, \frac{y}{y-2}, \frac{x+2}{x^{2}+4 x+4}, \frac{m^{2}-9}{3} \quad \frac{\sqrt{x}}{x}$
how zero
affects division
restricted values

Evaluate $\frac{0}{3}=0$ Think: If you have 0 items and split them into 3 graps,
how many items are in each gray?
When zero is divided by any non-zero real number, ...
The result is 0 .

$$
\begin{aligned}
\text { Evaluate } \frac{7}{0}=\text { undefined } \\
\uparrow \text { gives error }
\end{aligned}
$$

Division by zero is undefined because...
.... If you have 7 items, you cannot put them into zero graps

For the expression $\frac{3}{x-2}$, what value of x is restricted? $\quad x \neq 2 \quad(x$ cannot equal 2$)$ What is a restricted value?
Any value that will make the denominator zero, as this will cause the expression to be undefined
Write a rule that explains how to determine restricted values:
Set the denominator equal to zero and solve The results are the restricted values.

Example 1 - Determine the restrictions for each rational expression: Top is allowed to be 0
a) $\frac{4 a}{(3 b)}$
c) $\frac{2 y^{2}}{\frac{y}{}^{1_{\text {factor }}-4}}$
$\frac{3 b}{3}=\frac{0}{3}$
$b=0$
$b \neq 0$
b) $\frac{x-1}{(x+2)(x-3)}$
$(x+2)(x-3)=0$
$x=-2 \quad x=3$
$x \neq-2, x \neq 3$

$$
=\frac{2 y^{2}}{(y+2)(y-2)}
$$

$$
y \neq-2
$$

$$
\begin{gathered}
\text { or } \\
y \neq \pm 2
\end{gathered}
$$

restriction

$$
\begin{aligned}
& \text { simplifying } \\
& \text { rational } \\
& \text { expressions } \\
& \text { When simplifying rational expressions: } \\
& \text { 1) Factor as much as possible. State restrictions } \\
& \text { 2) } \\
& \text { common factors. } \\
& \text { Example } 2 \text { - Simplify the rational expressions. Keep a running list of restrictions. } \\
& \text { a) } \frac{3 x-3}{6 x-6} \text {-factor- } \text { trevor } \begin{array}{c}
\text { common } \\
\text { factor }
\end{array} \\
& \text { b) } \frac{x-2}{x^{2}-4 \rightarrow \text { perfect square }} \begin{array}{r}
x \neq \pm 2 \\
\sqrt[x]{4}=x \\
\sqrt{4}=2
\end{array} \\
& \text { c) } \frac{3 x-6}{2 x^{2}+x-10} \rightarrow \underset{\underline{a x}}{ }{ }^{2}+b x^{\circ}+x^{4} \text { method } \\
& \frac{4(40)(3)}{(4.5) \pi} \\
& (1,10)(2,5) \\
& \frac{5}{5} \times-2=-104 \\
& \frac{5}{5}+\underline{-2}=3 \\
& \frac{3(x-1)}{6(x-1)} \quad \begin{array}{l}
\text { identical factors } \\
\text { must } \\
\text { top } / \text { be tot mu liplying }
\end{array} \\
& \text { restriction } x \neq 1 \\
& =\frac{3 \div 3}{6 \div 3} \\
& =\frac{1}{(x+2)}, x \neq \pm 2 \\
& \begin{array}{l}
\left.\begin{array}{l}
3(x-2) \\
\begin{array}{l}
3(x+5)(x-2) \\
\text { restrictions } \\
x \neq 2, \frac{-5}{2}
\end{array}
\end{array} \begin{array}{l}
2 x^{2}+x-10 \\
x^{2}+x-20 \\
\frac{5}{5} \times \frac{-4}{}=-20 \\
\left(x+\frac{-4}{5}\right)\left(x-\frac{4}{2}\right) \\
(2 x+5)(x-2)
\end{array}\right)
\end{array} \\
& =\frac{1}{2}, x \neq 1 \\
& =\frac{3}{(2 x+5)}, x \neq 2, \frac{-5}{2} \\
& \text { f) } \frac{x^{2} y+x y^{2}}{x y+y^{2}} \\
& =\frac{(x)(y)(x+y) \quad y \neq 0,-x}{(y)(x+y)} \\
& =x, y \neq 0,-x \\
& \text { d) } \frac{2 y^{2}+y-10}{y^{2}+3 y-10} \rightarrow \text { use "are" mos method lat example } \\
& \text { e) } \frac{6-2 m}{m^{2}-9} \leftarrow^{\text {Recorder! }} \\
& \begin{array}{cc}
\frac{(y-2)(2 y+5)}{(y+5)(y-2)} & \frac{-2 m+6}{m^{2}-9} \\
\frac{-2(m-3)}{(m+3)(m-3)} \\
\frac{(2 y+5)}{(y+5)} y \neq-5,2 & \frac{-2}{m+3}, m \neq \pm 3
\end{array} \\
& \frac{(x-2)}{(x+2)(x-2)} \\
& \text { list restrictions } \\
& \text { before canceling }
\end{aligned}
$$

*See the bottom of page 71 for Common Errors
multiplication \& division review

Warmup - Simplify
a) $\begin{array}{r}\left(\frac{3}{-4}\right) \times\left(\frac{1}{2}\right) \\ \frac{3}{-8}=\frac{-3}{8}\end{array}$
b) $\left(\frac{5}{8}\right)\left(\frac{-4}{15}\right)^{7}$
or cross
b) $\begin{aligned} &\left(\frac{5}{8}\right)\left(\frac{-4}{15}\right) \\ & \frac{-20 \div 20}{120 \div 20}\end{aligned}$
C) $\frac{2}{3} \div \frac{3}{4}$
d) $\frac{\frac{2}{5}}{\frac{-1}{10}} \leftarrow$ remit

$$
=\frac{-1}{6}
$$

$=\frac{2}{3} \times \frac{4}{3}$
$=\frac{8}{9}$

$$
\frac{2}{5} \div \frac{-1}{10} \uparrow
$$

$$
\frac{2}{5} \times \frac{-10}{1}
$$

Explain how to multiply fractions:

$$
\frac{-20}{5}=-4
$$

- 100 K to reduce early by cross reducing (optional)
- multiply across the top and bottom
- look to reduce to write in simplest form

Explain how to divide fractions:

- flip second fraction and then multiply (use steps above)

Example 1 - Simplify and keep a running list of restrictions.
a) $\left(\frac{x+3}{2}\right)\left(\frac{x+1}{4}\right) \underset{\text { restrictions }}{\text { no }}$
b) $\left(\frac{4 x^{2}}{3(x \mid y)}\right)\left(\frac{y^{2}}{8 x}\right) \begin{aligned} & x \neq 0 \\ & y \neq 0\end{aligned}$
c) $\left(\frac{d}{\left(2 \mid\left(\pi r^{\prime} r\right)\right.}\right)\left(\frac{2 \pi r h}{(d-2)}\right) \begin{gathered}d \neq 2 \\ r \neq 0\end{gathered}$
$=\frac{(x+3)(x+1)}{8}$
factored is better,
could expand top
if wanted
$\frac{x^{2}+4 x+3}{8}$

$$
\begin{aligned}
& =\frac{2 \pi r h d}{2 \pi r(d-2)} \\
& =\frac{h d}{(d-2)}, \begin{array}{r}
d \neq 2 \\
r \neq 0
\end{array}
\end{aligned}
$$

$\frac{\text { updated steps }}{\text { 1) factor }}$
2) state restrictions
3) Change any \div to x
(flip and fraction)
*Bb) state any nee restrictions
4) reduce (cancel identical
factors top and bottom)

$$
\begin{aligned}
& \text { b) }\left(\frac{x^{2}-x-12}{x^{2}-9}\right) \cdot\left(\frac{x^{2}-4 x+3}{x^{2}-4 x}\right) \\
& \begin{array}{l}
=\frac{(x-4)(x+3)}{(x+3)(x-3)} \cdot \frac{(x-3)(x-1)}{(x)(x-4)} \quad x \neq \pm 3,0,4 \\
=\frac{(x-1)}{(x)}, x \neq \pm 3,0,4
\end{array} \\
& =\frac{(y+3)(y-3)}{(r)(r+1)(r-1)} \cdot \frac{(r)(r-1)}{(y+3)} \\
& =\frac{(y-3)}{(r+1)} \quad r \neq 0, \pm 1 \\
& \text { a) } \frac{y^{2}-9}{r^{3}-r} \times \frac{r^{2}-r}{y+3} \\
& =\frac{(y+3)(y-3)}{r \frac{r\left(r^{2}-1\right)}{\substack{\text { diff of } \\
\text { square }}}} \times \frac{r(r-1)}{(y+3)}
\end{aligned}
$$

Example 2 - Simplify and keep a running list of restrictions. \rightarrow can 't do restrictions until factored

Example 3 - Simplify and keep a running list of restrictions.
a) $\frac{m^{2}-6 m-7}{m^{2}-49} \div \frac{m^{2}+8 m+7}{m^{2}+7 m}$

$$
\begin{aligned}
& =\frac{(m-7)(m+1)}{(m+7)(m-7)} \div \frac{(m+1)(m+7)}{m(m+7)} \\
& =\frac{(m-7)(m+1)}{(m+7)(m-7)} \times \frac{(m)(m+7)}{(m+1)(m+7)} \sqrt{1}, m \neq-1 \\
& =\frac{(m)}{(m+7)}, m-1,0,7
\end{aligned}
$$

b) $\frac{3 x+12}{3 x^{2}-5 x-12} \div \frac{12}{3 x+4} \times \frac{2 x-6}{x+4}$
"ac" method

$$
\begin{aligned}
& 3 x^{2}-5 x-12 \\
& x^{2}-5 x-36 \\
& \frac{-9}{\frac{-9}{4}+\frac{4}{4}=-36}=-5 \\
& \left(x-\frac{9}{3}\right)\left(x+\frac{4}{3}\right) \\
& (x-3)(3 x+4)
\end{aligned}
$$

adding \&

 subtracting reviewWarmup - Simplify each expression
a) ${ }_{4 \times 5} \frac{5}{6}-\frac{3}{8 \times 3} \times 3$
b) $x_{x^{5}} \frac{x^{5}}{3}+\frac{4}{5 \times 3}$
c) $\frac{\underline{\underline{7 x}+1}}{x}+\frac{\underline{\underline{5 x}-2}}{x}$
d) $\frac{7 \cdot 4 x}{6 x^{2}} \cdot 4 x \cdot \frac{3}{8 x^{3}} \cdot 3$
$\frac{20}{24}-\frac{9}{24}$
$=\frac{11}{24}$

$$
\begin{gathered}
\frac{-10}{15}+\frac{12}{15} \\
=\frac{2}{15}
\end{gathered}
$$

$=\frac{12 x-1}{x} \square$

$$
x \neq 0
$$

$$
\frac{28 x}{24 x^{3}}-\frac{9}{24 x^{3}}
$$

$$
\frac{28 x-9}{24 x^{3}} \quad x \neq 0
$$

Write the steps to adding/subtracting fractions:
(1) Get common denominators
(2) Add/ subtract numerators (leave denom the same)
(3) Reduce

Example 1 - Simplify and identify all restrictions.

Steps: 1) Factor as much as possible.
2) List restrictions. Do any relevant reducing.
3) Get common denominators.
4) Add or subtract numerators.
5) Do any further factoring and/or reducing.

Example 2 - Simplify and identify all restrictions.

$$
\begin{array}{ll}
\text { a) } \frac{4}{x^{2}-1}+\frac{3}{1-x} \rightarrow-x+1 & \text { b) } \frac{x-2}{x^{2}+x-6}-\frac{x^{2}+6 x+5}{x^{2}+4 x+3} \\
\frac{4}{(x+1)(x-1)}+\frac{3}{6(x-1)} \cdot(x+1) \quad x \neq \pm 1 & \frac{(x-2)}{(x+3)(x-2)}-\frac{(x+1))(x+5)}{(x+3)(x+1)} x \neq-3,2,-1 \\
\frac{4}{(x+1)(x-1)}+\frac{-3(x+1)}{(x-1)(x+1)} & \frac{1}{(x+3)}-\frac{(x+5)}{(x+3)} \\
\frac{4}{(x+3 x-3}(x-1) & \frac{1-x-5}{(x+3)} \\
\frac{-3 x+1}{(x+1)(x-1), x \neq \pm 1} & \frac{-x-4}{(x+3)}, x \neq-3,2,-1
\end{array}
$$

$$
\begin{aligned}
& \text { c) } \frac{1}{x^{2}-1}-\frac{2}{x^{2}+x} \\
& \frac{1 \cdot x}{(x+1)(x-1) \cdot x}-\frac{2 \cdot(x-1)}{(x)(x+1) \cdot(x-1)} x \neq \pm 1,0 \\
& =\frac{x(-2)(x-1)}{x(x+1)(x-1)} \\
& =\frac{x-2 x+2}{x(x+1)(x-1)} \\
& =\frac{-x+2}{x(x+1)(x-1)}, x \neq \pm 1,0
\end{aligned}
$$

d) $\frac{3 x+9}{x^{2}+7 x+10}+\frac{14}{x^{2}+3 x-10}$
$\frac{3(x+3) \cdot(x-2)}{(x+5)(x+2)(x-2)}+\frac{14(x+2)}{(x+5)(x-2)(x+2)} x \neq-5, \pm 2$
$\frac{3(x+3)(x-2)+14(x+2)}{(x+5)(x+2)(x-2)} \rightarrow 3\left(x^{2}+x-6\right)+14 x+28$

$$
\begin{aligned}
& \frac{3 x^{2}+3 x-18+14 x+28}{(x+5)(x+2)(x-2)} \\
& \begin{array}{l}
3 x^{2}+17 x+10 \\
(x+5)(x+2)(x-2)
\end{array}
\end{aligned} \quad \begin{aligned}
\text { side trip factor } \\
3 x^{2}+17 x+10 \\
x^{2}+17 x+30 \\
\\
\frac{15}{15} \times \frac{2}{2}=30 \\
15
\end{aligned}
$$

$$
\frac{(x+5)(3 x+2)}{(x+5)(x+2)(x-2)} \quad \begin{array}{ll}
\left(x+\frac{15}{3}\right)\left(x+\frac{2}{3}\right) \\
(x+5)(3 x+2)
\end{array}
$$

$$
\frac{3 x+2}{(x+2)(x-2)}, x \neq \pm 2,-5
$$

2.4 - Mixed Operations in Rational Expressions

When simplifying rational expressions with mixed operations, ORDER OF OPERATIONS is to be followed (BEDMAS).

Example 1 - Simplify \& identify all restrictions.
a) $\frac{x+5}{x+6}+\underbrace{\frac{1}{x+4} \div \frac{x+6}{x^{2}-x-20}}_{\text {Divicle first before add }}$,
$\frac{(x+5)}{(x+6)}+\frac{1}{(x+4)} \div \frac{(x+6)}{(x-5)(x+4)} \quad x \neq-6,-4,+5$
$\frac{(x+5)}{(x+6)}+\frac{1}{(x+4)} \times \frac{(x-5)(x+4)}{(x+6)}$
$\frac{(x+5)}{(x+6)}+\frac{(x-5)}{(x+6)}$
b) $\begin{aligned} & \underbrace{\left(\frac{x-3}{x^{2}-9}+\frac{x+3}{x^{2}+6 x+9}\right)}_{\text {bruclat, start here }}\left(\frac{x+3}{x+1}\right) \\ & \left(\frac{1(x-3)}{(x+3)(x-3)}+\frac{(x+3)}{(x+3)(x+3)}\right)\left(\frac{(x+3)}{(x+1)}\right) \quad x \neq \pm 3,-1\end{aligned}$

$$
\frac{2}{(x+3)} \times \frac{(x+3)}{(x+1)}
$$

$$
\frac{2}{x+1}, x \neq \pm 3,-1
$$

$\frac{x+5+x-5}{(x+6)}$

$$
\frac{2 x}{(x+6)}, x \neq-6,-4,+5
$$

Complex Fractions - Rational Expressions that contain fractions in the numerators and/or denominators.

Example 2 - Simplify and identify all restrictions.

$$
\frac{2-\frac{4}{y}}{y-\frac{4}{y}}
$$

$$
\left(\frac{2 \cdot y}{1 \cdot y}-\frac{4}{y}\right) \div\left(\frac{y \cdot y}{1 \cdot y}-\frac{4}{y}\right)
$$

$$
\frac{2 y-4}{y} \div \frac{y^{2}-4}{y} \quad y \neq 0
$$

$$
\frac{2(y-z)}{y} \times \frac{y}{(y-2)(y+2)} \quad y \neq \pm 2,0
$$

$$
\frac{2}{(y+2)}, y \neq \pm 2,0
$$

1) Get a common denominator for the numerator and then the denominator of the complex fraction.
2) Write each as one fraction.
3) Rewrite the division in a side-by-side manner and simplify.

Example 3 - Simplify and identify all restrictions.
s.
a) $\frac{\left(\frac{2}{5 x}-\frac{3}{x^{2}}\right)}{\left(\frac{7}{2 x}+\frac{3}{4 x^{2}}\right)}$
$\left(\frac{2 \cdot x}{5 x \cdot x}-\frac{3 \cdot 5}{x^{2 \cdot 5}}\right) \div\left(\frac{7.2 x}{2 x \cdot 2 x}+\frac{3}{4 x^{2}}\right)$
$\left(\frac{2 x}{5 x^{2}}-\frac{15}{5 x^{2}}\right) \div\left(\frac{14 x}{4 x^{2}}+\frac{3}{4 x^{2}}\right)$

$$
\frac{x+2+2 x-2}{(x-1)(x+2)} \div \frac{2 x-6-x-2}{(x+2)(x-3)}
$$

$\frac{2 x-15}{5 x^{2}} \div \frac{14 x+3}{4 x^{2}} \quad x \neq 0$
$\frac{2 x-15}{5 x^{2}} \times \frac{4 x^{2}}{14 x+3} \quad x \neq 0, \frac{-3}{14}$
$\frac{4(2 x-15)}{5(14 x+3)}, x \neq 0, \frac{-3}{14}$
b)

$$
\left(\frac{1(x+2)}{(x-1)(x+2)}+\frac{2(x-1)}{(x+2)}\right) \div\left(\frac{2(x-1)}{(x+3)(x-3)}-\frac{1(x+2)}{(x-3)}(x+2)\right.
$$

b) $\frac{\frac{x}{x-1}+\frac{2}{x+2}}{\frac{2}{x+2}-\frac{1}{x-3}}$
$\left(\frac{1(x+2)}{(x-1)(x+2)}+\frac{2(x-1)}{(x+2)(x-1)}\right) \div\left(\frac{2(x-3)}{(x+2)(x-3)}-\frac{1(x+2)}{(x-3)(x+2)}\right)$

$$
\begin{array}{ll}
\frac{3 x}{(x-1)(x+2)} & \bigodot^{\frac{x-8}{(x+2)(x-3)}} \\
\frac{3 x}{(x-1)(x+2)} \times \frac{x}{} \times \frac{(x+2)(x-3)}{(x-8)} & x \neq 8
\end{array}
$$

$$
\frac{3 x(x-3)}{(x-1)(x-8)}, x \neq 1,-2,3,8
$$

A rational equation is an equation containing at least one rational expression.
Remember, when working with an equation, whatever you do to one side, you do to the other side.

Steps to solving rational equations:

1) Factor each denominator if possible.
2) Identify any restrictions (and do this throughout).
3) Multiply both sides of the equation by what would be the lowest common denominator in order to eliminate the fractions. Δ clearing fractions
4) Solve the equation.
5) Check your solutions. \& check restrictions

Example 1 - Solve
a) $\frac{x}{2}+\frac{7}{3}=\frac{5}{6}$ no Restrictions
a) $\frac{x}{2}+\frac{7}{3}=\frac{5}{6}$
(CR:6
$\frac{x}{2} \cdot \frac{6^{3}}{1}+\frac{7}{3} \cdot \frac{6^{2}}{1}=\frac{5}{6} \cdot \frac{6}{1}$
b) $\frac{5}{3 x}-\frac{1}{9}=\frac{4}{x} \quad \angle C D=q_{x}$
$\frac{5}{3 \cdot x} \cdot \frac{9^{3}}{1}-\frac{1}{9} \cdot \frac{9^{x}}{1}=\frac{4}{x} \cdot \frac{q_{x}^{9}}{1} x \neq 0$

$$
\begin{aligned}
& 15-x=36 \\
& -15
\end{aligned}
$$

$$
\frac{-x}{-1}=\frac{21}{-1}
$$

$$
x=-21 \quad x \neq 0
$$

Example 2 - Solve
LCD: $(x-4)$

*When a solution is the same as a restricted value, it is called an EXTRANEOUS solution.
$\begin{aligned} & \text { Quadratics } \rightarrow \text { factor? } \\ & \text { quad formula }\end{aligned}$
Example 3 - Solve
a) $\frac{x}{x-5}-\frac{3}{x+1}=\frac{30}{x^{2}-4 x-5}$

$$
\frac{x^{(x-5)(x+1)}}{(x-5)}-\frac{3(x-5)(x+1)}{(x+1)} \stackrel{30}{(x-5)(x+1)} \quad(x-5)(x+1) \quad \begin{aligned}
& x \neq 5,-1 \\
& L C D=(x-5)(x+1)
\end{aligned}
$$

$\overbrace{x(x+1)}^{-3(x-5)=30}$
$x^{2}+x-3 x+15=30$
$x^{2}-2 x-15=0$
$(x-5)(x+3)=0$
sol is zero's of brackets
$x=5 \quad x=-3 \quad x \neq 5,-1$
sol $x=-3$
b) $\frac{3 x}{x+2}-\frac{5}{x-3}=\frac{-25}{x^{2}-x-6}$
$\frac{3 x}{(x+2)} \frac{(x-3)(x+2)}{(x-3)} \cdot \frac{(x-3)(x+2)-25 \cdot(x-3)(x+2)}{=} \frac{-2 \neq-2,3}{(x-3)(x+2)} \quad \angle C D=(x-3)(x+2)$
$3 x(x-3)-5(x+2)=-25$
$3 x^{2}-9 x-5 x-10=\begin{aligned} & -25 \\ & +25\end{aligned}+25$
favor "ac" method $(3) x^{2}-14 x+15=0$
$x^{2}-14 x+45=0$
$\left(x-\frac{9}{3}\right)\left(x-\frac{5}{3}\right)=0$
$(x-3)(3 x-5)=0$ $x=3 \quad x=\frac{5}{3} \quad x \neq-2,3$

Sol $x=\frac{5}{3}$

2.7 -Applications of Rational Equations

There is no fool-proof way to solve a word problem. You should try to read the problem carefully, create a 'Let' statement for your variable, build your equation (sometimes using a table or diagram for assistance), and solve the equation. Then do a check.
shared work
Example 1 - Stella takes 4 hours to paint a room. It takes Jose 3 hours to paint the same area. How long will the paint job take if they work together?

Let $x=$ time it takes together

	Time to Paint (hours)	Fraction of Work Done in 1 hour	Fraction of Work Done in x hours
Stella	4	$\frac{1}{4}$ job/h	$\frac{1}{4} x=\frac{x}{4}$
Jose	3	$\frac{1}{3}$ job/h	$\frac{1}{3} x=\frac{x}{3}$
Together	X	$\frac{1}{x}$ job/h	$\frac{1}{x} x=\frac{x}{x}=1$

$$
\begin{aligned}
& \frac{\text { total time }}{\text { stella's time }}+\frac{\text { total time }}{\text { jose's time }}=1 \text { job } \\
& \frac{X(4)(3)}{4}+\frac{X(4)(3)}{3}=1 \text { (4)(3) }
\end{aligned}
$$

$3 x+4 x=12$
$\frac{7 x}{7}=\frac{12}{7}$
$x=\frac{12}{7}=1 \frac{5}{7} \rightarrow \frac{5}{7} \times 60$ min $=43$ min
Th and 43 min

$$
2 \text { hours } 44 \mathrm{~min}
$$

	Tire	Fraction I min	Fraction of work in $\frac{\text { yo }}{3}$
evan	X	$\frac{1}{x}$	$\frac{1}{x}=\frac{40 / 3}{x}$
$J J$	$2 x$	$\frac{1}{2 x}$	$\frac{1}{2 x}=\frac{40 / 3}{2 x}$
together	$\frac{40}{3}$	$\frac{1}{40 / 3}$	1

Example 2 - Jenny takes 5 hours to install laminate flooring in the kitchen by herself. Mike can do the job alone in 6 hours. How long would it take them if they did it together? Le $x=$ time together

$$
\frac{x^{(5)(6)}}{5}+\frac{x^{(5)(6)}}{6}=1^{(5)(6)}
$$

$$
\frac{\text { total time }}{\text { jenny's } T}+\frac{\text { total tim }}{\text { mikes' } T}=1
$$

$$
6 x+5 x=30
$$

$$
\frac{11 x}{11}=\frac{30}{11} \quad 2 \frac{8}{11} \quad \frac{8}{11} \times 60=44 \mathrm{~min}
$$

$$
x=30 / 11
$$

Example 3 - Evan works twice as fast as JJ. If it takes them 13 minutes \& 20 seconds together to shovel snow from the driveway, how long would it take JJ by himself?

$$
\begin{aligned}
& \text { Let } x=\text { evans fine } \quad / 2 x=J J \text { 's time } \\
& \frac{\text { total time }}{\text { evans time }}+\frac{\text { total tire }}{\text { oj's time }}=1 \text { job } \\
& \frac{40 / 3 \cdot 2 x}{x}+\frac{40 / 3^{2 x}}{2 \cdot x}=1^{2 x} \\
& \text { Evan }=20 \mathrm{~min} \\
& J J=2(20) \\
& \frac{80}{3}+\frac{40}{3}=2 x \\
& \text { Total tine }=13+\frac{20}{60} \\
& =13+\frac{1}{3}=\frac{40}{3} \\
& \frac{120}{3}=2 x \\
& \frac{40}{2}=\frac{2 x}{2} \\
& 20=x
\end{aligned}
$$

Example 4 - A speedboat can travel 108 km downstream in the same time it can travel 78 km upstream. If the current of the river is $10 \mathrm{~km} / \mathrm{h}$, what is the speed of the boat in still water?

$$
s=\frac{d}{t} \quad d=s t \quad t=\frac{d}{s}
$$

let $x=$ speed in still mated

$$
\begin{aligned}
& \frac{108}{x+10} \stackrel{(x+10)(x-10)}{=} \frac{78}{x-10}(x+10)(x-10) \\
& 108(x-10)=78(x+10) \\
& 108 x-1080=78 x+780 \\
& -78 x+1080 \\
& \frac{30 x}{30}=\frac{1860}{30} \quad \begin{array}{l}
\text { Speed in still water } \\
\text { is } 62 \mathrm{~km} / \mathrm{h}
\end{array}
\end{aligned}
$$

Example 5 - Rob and Alissa ride a skateboard a distance of 4 km . It takes Rob one more minute (hint: $\frac{1}{60}$ of an hour) than it takes Alissa, and Alissa travels $1 \mathrm{~km} / \mathrm{h}$ faster than Rob. At what speed is each traveling?

	d	s	$t=d / s$	equation
Rob	equip's time is amin more than Alissa's			
Alissa	4	x	$\frac{4}{x}$	$\frac{4}{x}=\frac{1}{60}+\frac{4}{x+1}$

le $\dagger x=$ Rob's speed (Alissa's $=x+1$)
Solve: $\frac{4}{x} \cdot(60)(x)(x+1) \frac{1}{=} \cdot(60)(x)(x+1) \frac{4}{+(x+1)} \cdot(60)(x)(x+1)$

$$
\begin{array}{rl|l}
4(60)(x+1) & =x(x+1)+4(60)(x) & \begin{array}{rl}
x=15(\text { ROb }) \\
240 x+240 & = \\
x+1=16 \text { (Alissa) } \\
-240 x-240 & x+x+240 x
\end{array} \\
0 & =x^{2}+x-240 & \begin{array}{l}
\text { Rob travels at } 15 \mathrm{~km} \\
\text { Alissa travels at } 16 \mathrm{k}
\end{array}
\end{array}
$$

$$
\begin{aligned}
0= & x^{2}+x-240 \\
= & (x-15)(x+16) \\
& x=15 \quad x=16
\end{aligned}
$$

