6.1A - Linear Graphing Review Part 1

Key

A linear relation is an equation that relates two variables together (usually x and y) where the variables are of degree 1. Graphing a linear relation creates a LINE.

There are typically three ways to graph a line using its linear equation:

- 1) Using a table of values
- 2) Using slope / y-intercept form
- 3) Using general or standard form

PART 1 - USING A TABLE OF VALUES

Example 1 - Graph the following linear relations using a table of values

a) y = -2x - 5 y = -2(2) - 5 y = -2(0) - 5 = -4 - 5y = -9 b) 3x - 2y = 8 3(2) - 2y = 8 3(2) - 2y = 8

 $\begin{array}{r}
 3(4) - 2y = 8 \\
 12 - 2y = 8 \\
 -12 \\
 -2y = -4 \\
 y = 2
 \end{array}$

Graphing a line using a table of values is too time consuming, but a great backup method!

PART 2 – USING SLOPE / Y-INTERCEPT FORM

One of the most effective ways to graph linear equations is to get it into the form $y=mx\pm b$, which is known as slope / y-intercept form.

m is the $\frac{\text{SLOPE}}{\text{run}}$ and can be represented as $\frac{\text{rise}}{\text{run}}$

b is the y-intercept and tells you where the line crosses the yaxis

A slope of 1, or $\frac{1}{1}$ makes a 45° line that rises as you go to the right. Slopes larger than 1 make a line steeper than 45°, and slopes smaller than 1 make a line smaller than 45°

Example 2 – State the slope and y-intercept of $y = -\frac{1}{2}x + 4$. Then graph it.

$$M = slope = \frac{-1}{2}$$

Another observation: The line will _____ RISE_____ as you go right for a positive slope, and $\frac{DROP}{}$ as you go right for a negative slope.

Example 3 – Graph
$$2x - y = 6$$

$$2x - y = 6$$

$$+y$$

What is a common trait of each point on the line? The coordinates of any point on the line will satisfy the equation (the left side will equal the right side)

Example 4 – Is
$$(4, -2)$$
 on the line a) $y = -2x + 6$? b) $3x + 4y = -1$?

a)
$$y = -2x + 6$$
 (4,-2) is on b) $3x + 4y = -1$ (4,-2) is $-2 = -2(4) + 6$ the line $-2 = -8 + 6$ $y = -2x + 6$ $-6 + 16 = -1$ $3x + 4y = -1$ $3x + 4y = -1$

Example 5 - Graph each equation using slope / y-intercept form

$$18k - 4y = 2$$

 $-8x$ $6 = -\frac{1}{2}$
 $-4y = -8x + 2$
 -4 -4 $M = 2e^{-4p}$
 $y = 2x - \frac{1}{2}$

PART 3 – USING GENERAL / STANDARD FORM

Standard Form: $Ax \pm By = \pm C$ General Form: $Ax \pm By \pm C = 0$

The quickest way to graph in general and standard form is to:

- 1) Put the equation into standard form.
- 2) Get the x-intercept by covering the y term, and then graph.
- 3) Get the y-intercept by covering the x term, and then graph.
- 4) Use the handy slope rule as an extra piece of useful information *the slope of a line in general or standard form is always:

'A over B, switch the sign'

a)
$$3x + 2y = 6$$

$$x$$
-int: $3x+2(0)=6$ y -int: $3(0)+2(0)$

$$x - 3y + 9 = 0$$

 $x - 3y = -9$

$$y-int: -3y=1$$

 $y=3$

$$3x = 6$$

$$x = 2$$

Example 2 – Graph 5x - 4y - 10 = 0

$$5x - 4y = 10$$

$$5x = 10 - 4y = 10$$

$$5x-4y=10$$

 $x-int:$ $y-int:$
 $5x=10$ $-4y=10$
 $x=2$ $y=-\frac{10}{4}=-\frac{5}{2}=-2.5$

Slope =
$$\frac{5}{4}$$

Special Cases

Example 3 – Graph (a)
$$y = 2$$

(b)
$$y = -5$$

Example 4 – Graph (a)
$$x = -3$$
 (b) $x = 4$

What does it mean to 'solve a linear system'?

A linear system is two (or more) linear relations. To solve a linear system, you must find the intersection point(s) of the linear relations.

What are all the solution possibilities for a linear system?

In Math 10, you learned three methods for solving a linear system:

1) Graphing (2) Substitution 3 Elimination

Example 1 – Solve the linear system by graphing

1)
$$y = 4 - x$$

(2)
$$2x-3y=3$$

2)
$$2x - 3y = 3$$

$$2x=3$$
 $-3y=3$

$$=1.5$$
 $y=-1$

$$Slope = \frac{2}{3}$$

1) y=4-x (2) 2x-3y=32) 2x-3y=3 x-int: y-int: 0 y=1-x y=-1 y=-x+4 y=-1 y=-

Example 2 – Solve the following system using substitution

1)
$$3x + y = 3$$
 get y by itself (easiest choice)

2)
$$7x - 2y = 20$$

$$0 3x + y = 3$$

$$-3x$$

$$|3x-6=20$$

$$\frac{13x=26}{13}$$

$$\chi = 2$$

$$7x - 2(-3x + 3) = 20^{10} 3x + y = 3$$

$$7x + 6x - 6 = 20$$

$$3x-6=20$$
 $-6+$

Steps:

- 1) Get a variable by itself.
- 2) Substitute into the other equation.
- 3) Solve for the remaining variable.
- 4) Substitute the solved variable value back into one of the original equations to determine the other variable value.

Example 3 – Solve the system using substitution

1)
$$2x + 3y = 1$$
2) $3x - y = 7$
 $x = 2$
 $y = 3x - 7$
 $y = 7$

Example 4 – Solve the system using elimination (text calls it the 'addition method')

1)
$$(2x+5y=11) \times 3$$

2) $(3x-2y=7) \times 2$
 $6x+15y=33$
 $-(6x-4y=14)$
 $19y=\frac{19}{19}$
 $2x+50)=11$
 $2x+50=11$
 $2x+6=11$
 $-x=6$
 $2x=6$

Steps:

- 1) Line up the equations by like terms.
- 2) Make sure either the coefficients for **x** or the coefficients for **y** have the same magnitude.
- 3) Add or subtract to eliminate a variable
- 4) Do Steps 3 & 4 described in the substitution method.

Solution (3,1)

Example 5 – Solve the system using elimination

1)
$$(4x-y=2) \times 3$$

2) $x-3y=-5$
1 - 3y = -5
2) $(x-3y=-5)$
1 - 3y = -6
1 - 3y = -2

 $\gamma = 3$

*Look over Example 3 on the bottom of p.194, and Example 4 on the top of p.195.

These show examples of what the situation will look like if there are intinte solutions and no solutions to a system

Solving word problems for linear systems can be challenging. Here are some steps to aid in the process:

- 1) Read the problem over very carefully.
- 2) Let the two variable equal the two things you are being asked to solve.
- 3) If possible, make a table to help organize the data.
- 4) Build your two equations using your organized information and variables.
- 5) Use elimination or substitution to solve.
- 6) Check by substituting solutions back into each equation.

Example 1 – Two shirts and one sweater costs \$60. Three shirts and two sweaters costs \$104. What is the cost of one shirt and what is the cost of one sweater?

Let
$$x = cost$$
 of one shirt
Let $y = cost$ of one sweater

$$0(2x + y = 60) \times 2 \qquad 0 \times 2x + y = 60$$

$$2(3x + 2y = 104) \qquad 2(16) + y = 60$$

$$32 + y = 60$$

$$428$$

$$(16, 28)$$

Framula 2. Adult tickets for the school play are \$12.00 and shildren's tickets are

Example 2 – Adult tickets for the school play are \$12.00 and children's tickets are \$8.00. If a theatre holds 300 seats and the sold out performance brings in \$3280.00, how many children and adults attended the play?

Let
$$x = \#$$
 of adults who attended the play let $y = \| \|$ children $\| \|$...

(1) $(x + y = 300) \times 8$

(2) $12x + 8y = 3280$

(3) $(12x + 8y = 3280)$

(4) $(12x + 8y = 3280)$

(5) $(12x + 8y = 3280)$

(6) $(12x + 8y = 3280)$

(7) $(12x + 8y = 3280)$

(8) $(12x + 8y = 3280)$

(9) $(12x + 8y = 3280)$

(1) $(12x + 8y = 3280)$

(2) $(12x + 8y = 3280)$

(3) $(12x + 8y = 3280)$

(4) $(12x + 8y = 3280)$

(5) $(12x + 8y = 3280)$

(6) $(12x + 8y = 3280)$

(7) $(12x + 8y = 3280)$

(8) $(12x + 8y = 3280)$

(9) $(12x + 8y = 3280)$

(10) $(12x + 8y = 3280)$

(10) $(12x + 8y = 3280)$

(11) $(12x + 8y = 3280)$

(12) $(12x + 8y = 3280)$

(13) $(12x + 8y = 3280)$

(14) $(12x + 8y = 3280)$

(15) $(12x + 8y = 3280)$

(16) $(12x + 8y = 3280)$

(17) $(12x + 8y = 3280)$

(18) $(12x$

$$0 \quad 8x + 8y = 2400
(1) x + y = 300
(2) adults attended attended
(3) x + y = 300
(4) x + y = 300
(5) x + y = 300
(7) x + y = 300
(7) x + y = 300
(8) x + y = 300
(9) x + y = 300
(1) x + y = 300
(2) x + y = 300
(3) x + y = 300
(4) x + y = 300
(5) x + y = 300
(6) x + y = 300
(7) x + y = 300
(8) x + y = 300
(9) x + y = 300
(1) x + y =$$

Example 3 – Isaac borrowed \$2100 for his college tuition. Part of it he borrowed from the government at 5% annual interest. The rest he borrowed from a bank at 6.5% annual interest. If the total annual interest is \$114, how much did he borrow from each source?

Let x = amount borrowed from govt x.5% = 0.05Let y = amount borrowed from bank x.6.5% = 0.065

11	Gort	Bank	Total
\$ Borrowed	x	y	2100
Interest	0.052	0.0654	114

$$0 \times + y = 2100$$

$$0.05 \times + 0.065 y = 114$$

Substitution:

$$0.015y = 9$$
 0.015
 0.015

\$1500 was borrowed from the gov't and \$600 was borrowed from the bank.