FOM 11 - Unit 1 Test - Rates and Scale Factor - Version C

First Name: Last Name: Block:

Learning Outcomes	Can Start		Can Partially		Can Do	
1. Can solve ratio and unit rate questions						
2. Can interpret, solve, and draw functions on a graph						
3. Can solve linear scale factor problems						
4. Can solve polygon application problems of perimeter, area, and volume						
TEST SCORE	0	1	2	3	4	5

PART 1:	Can Start		Can Partially		Can Do	
1. Can solve ratio and unit rate questions						

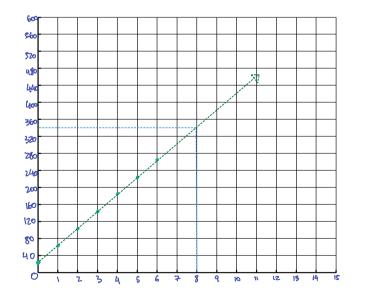
Show all work. Answers should have correct units

- 1) Paige carries 51g every 6 minutes
- a) Express as a rate (as a fraction in lowest terms)

$$\frac{5 \log}{6 \min} = \frac{17g}{2 \min}$$

b) Express as a unit rate:

c) Convert the unit rate to kilgrams per hour


$$g \rightarrow kg$$
 $m \rightarrow hr$
 $\frac{8.5g}{min} \left(\frac{1 kg}{1000g}\right) \left(\frac{60 min}{hr}\right) = \frac{0.51 kg}{hr}$

d) How long will it take Paige to carry 145kg?

2) Convert 56 miles per hour to kilometres per minute

PART 2:	Can Start		Can Partially		Can Do	
2. Can interpret, solve, and draw functions on a graph						
3) Calculate the rate of change (2 ma	rks):	<u> </u>	y ↑	·		·
2. Can interpret, solve, and draw functions on a graph 3) Calculate the rate of change (2 ma 1) look on graph 10 10 10 10 10 10 10 10 10 1	$ \begin{array}{ccc} & = & -3 \\ & & +2 \\ & = & -1 & \text{in} \\ & & & \text{Iom} \end{array} $	ength (inches)	10 9 8 -7 -6 -5			
2 calculate with slope	formul	Candle k	3			
$\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 7}{50 - 30} = \frac{5}{5}$	$\frac{-2}{20} = \frac{-1}{10}$	nien (1 20	40 60	80 10	120
time (minutes)						

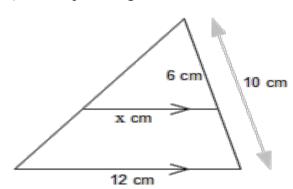
- 4) It costs \$25 to get into the art show, and \$40 per painting
- a) Graph data from 0 painting purchases to 8 purchases.
- b) Calculate how many paintings you'll have by spending a total of \$1225

3. Can solve linear scale factor problems			
_			

5) Complete the table:

Object Length	Image Length	Scale Factor	Enlargement/ Reduction
81 cm	27 cm	$\frac{\bot}{0} = \frac{27}{81} = \frac{1}{3}$	Reduction
5 m	40 m	<u>工</u> = 40 = 8	Enlargement
18 ft	63m	3.5	Enlargement
22.5	9 in	0.4	Reduction

$$63 = T$$


$$63 = T$$

$$0.4 = \frac{9}{A}$$

$$A = \frac{9}{0.4}$$

$$A = 22.5$$

6) The shapes triangles are similar. Find x:

$$|x| = \frac{12}{10} = \frac{12}{12}$$

$$\frac{72}{10} = \infty$$

$$7.2 = \infty$$

7) The scale factor for a billboard is $\frac{10}{3}$. If the human head is 40cm long, what is the length of the head on the billboard?

$$\frac{10}{3} = \frac{1}{A} = \frac{1}{40}$$

$$\Rightarrow \frac{400}{3} = \frac{1}{40} \times \frac{400}{3} = \frac{1}{40} = \frac{1}{40} \times \frac{400}{3} = \frac{1}{40} \times \frac{400} = \frac{1}{40} = \frac{1}{40} \times \frac{400}{3} = \frac{1}{40} = \frac{1}{40} \times \frac{$$

8) One triangular prism has a height of 4m, and another, similar to it, a height of 14m. In lowest terms, find the ratio of their:

Scale Factor = $\frac{14}{4} = \frac{7}{2}$

b) areas.

$$a^2:b^2 \quad \frac{7}{3^2} = \frac{49}{4}$$

c) volume.

volume.
$$a^3 : b^3 = \frac{7}{2^3} = \frac{343}{8}$$

9) A scale model of a car is 2:9. If 28L of paint is needed to paint the real car, how much paint is needed for the scale model (to the nearest tenth).

Scale factor =
$$\frac{2}{9}$$

Area ratio = $\frac{2^2}{9^2} = \frac{4}{81}$
 $\frac{28 \times \left(\frac{4}{81}\right)}{\left(\frac{8}{81}\right)} = \frac{\left(\frac{8}{28}\right)^{\times 28}}{\left(\frac{2}{81}\right)}$

And $\frac{28 \times 4}{81} = \frac{2}{81}$

[1.38L = Scale model

10) What will happen to the volume of a cylinder if the radius is doubled and the height is quadrupled?