Chapter 5 Notes

Quadratic Equations

Date	Topic/Lesson	Assignment
*Answers for many radical questions are in a different format in the workbook. Please refer to your "Ch 5 Radical Answers" page for certain questions.		
	1.1 - Intro to Quadratic Equations and Factoring Review	After Notes ex 5 - p.10: 6, 7, 8ace After Notes ex 8-p.13: 11
	1.2-Factoring Review, continued	After Notes - p.19: 2a-h, 4a-d, 7left
	5.1 - Solving Quadratic Equations by Factoring	$\begin{aligned} & \text { After Notes - p.188: 4, } 5 \text { (by factoring), } \\ & \text { 6a-k (skip b, d), 7a-d } \end{aligned}$
	5.2A - Solving Quadratic Equations by Square Root Principle and by Completing the Square ($\mathrm{a}=1$)	After Notes ex $2-$ p.195: 2left (see answer page for $2 \mathrm{c}, \mathrm{i}$), After Notes ex 4 - p.197: 6a-g
	5.2B - Solving Quadratic Equations by Completing the Square ($a \neq 1$	After Notes - p.198: 7 (see answer page for 7a,f, f, i)
	5.3-The Quadratic Formula	After Notes ex 4 - p.202: 2a-e After Notes ex 5 - p.203: 3a-f, 4a-g (see answer page for 3abcef and 4adef)
	5.5 - Applications of Quadratic Equations	After Notes ex 1-p.216: 2 After Notes ex 2 - p.216: 3 After Notes ex 4-p.217: 8-9 (for 9: V=LxWxH), 15-16
	Practice Test	Chapter 5 Practice Test
	Review	p.219: 1a-f, 3a-d, 5a-d, 6a-d,g,h, 8,12,13 (13: Profit = Revenue - Cost) (see answer page for 6abd)
	Unit Test	Chapter 5 Unit Test

1.1 - Introduction to Quadratic Equations and Factoring Review

A function of degree 2 (meaning the highest exponent on the variable is 2) is called a Quadratic Function.

When a quadratic function is graphed, a parabola results.
How many \mathbf{x}-intercepts can a parabola have? Draw all possibilities:

What is the \boldsymbol{y} value at an \boldsymbol{x}-intercept? the height is zero, so $\boldsymbol{y}=0$
Therefore, to find the x-intercepts of a parabola, we can set $\boldsymbol{y}=\mathbf{0}(\boldsymbol{\operatorname { o r }} f(x)=0)$ and solve the resulting quadratic equation.

When \boldsymbol{y} is set to 0 , we call the question a quadratic equation instead of a quadratic function.
Quadratic function: $f(x)=x^{2}-x-6$ vs Quadratic equation: $x^{2}-x-6=0$

${ }^{x}$'s only, ind x^{2}

Terminology

Finding x-intercepts by graphing

The \boldsymbol{x}-intercepts of the parabola are the zeros of the quadratic function. They are also called the solutions or roots of the quadratic equation.

What are the limitations of graphing?
Hard to answer when x-intercepts are at
decimals/large values or if vertex is hard
One method to find the zeros of a quadratic function is to graph it and visually determine the x-intercepts of the parabola.

Example 1 - Solve the quadratic equation $x^{2}-4=0$ by graphing the quadratic function $f(x)=x^{2}-4$ and determining the \mathbf{x}-intercepts of the parabola:

$$
\begin{aligned}
& x \text {-intercepts at }(-2,0) \text { and }(2,0) \\
& \text { so solutions to equation } x^{2}-4=0 \\
& \text { are } x=-2, x=2
\end{aligned}
$$

to plot, etc.
You can often find the roots of a quadratic equation by factoring when in general form $a x^{2}+b x+c=0$. Remember, the roots or solutions of the quadratic equation correspond to the zeros of the quadratic function, and the \mathbf{x}-intercepts of the parabola. We will review factoring before we try solving equations using factoring.

Factoring

Review

Multiplying two binomials

Example 1 - Expand and Simplify:

$$
x^{2}-7 x-x+7=x^{2}-8 x+7
$$

Remember: expanding and factoring are opposite operations....they UNDO each other!

Steps for Factoring a Trinomial in the form $a x^{2}+b x+c, \quad$ where $a=1$
Step 1: If needed, re-order the terms in descending powers of the variable (biggest to smallest)

Step 2: With any factoring question, first check to see if you can factor out a GCF from ALL terms!

Step 3: Find two numbers that multiply to equal the \mathbf{c} term and add to equal the \mathbf{b} term (multiply to the outside, add to the middle)

Step 4: Factor into two binomials using the numbers from step 3, with the variable from the question placed first in each bracket

Factoring a trinomial in the form $x^{2}+b x+c$
Example 2 - Factor the trinomial: $x^{2}-8 x+7 \quad$...we should end up with $(x-1)(x-7)$!

$$
\begin{array}{ll}
(x)(x) & \text { need \#s that (1,7) } \\
(x-7)(x-1) & \frac{-7}{-7} \times \frac{-1}{-7}+\frac{-1}{-}=-8
\end{array}
$$

Example $3-$ Factor: $z^{2}-2 z-8$

$$
\begin{array}{ll}
(z)(z) & \frac{-4}{(z \times z}=-8 \\
(z-4)(z+2) & \frac{-4}{(1,8)(2,4)}=-2
\end{array}
$$

Example 4 - Factor: $-30+7 m+m^{2}$

$$
\begin{aligned}
& \text { Reorder } \\
& m^{2}+7 m-30 \\
& (m)(m)
\end{aligned}
$$

$$
m^{2}+7 m-30 \quad \frac{10}{x} \times-3=-30
$$

$$
(m+10)(m-3)
$$

$10+\underline{-3}=7$
$(1,30)(2,15)(3,10)(5,6)$

1.2 - Factoring Review, continued

When $a \neq 1$ in a trinomial of the form $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, and it can't be factored out, then another process is needed.

One process you can use is called Decomposition, and uses factoring by grouping.
Steps for factoring $a x^{2}+b x+c, \quad a \neq 1$ by Decomposition

Step 1: If needed, re-order the terms in descending powers of the variable
Step 2: As with any factoring question, check to see if you can factor out a GCF
Step 3: Find two numbers that multiply to equal $a c$ and add to equal b (multiply to the product (\times) of the "outsides" first \times last, and add to the middle!)
Step 4: Rewrite the expression but split or decompose the middle (b) term, using the two numbers from step 3
Step 5: Now the expression has FOUR terms, so we can factor by grouping the first two terms and the last two terms
Step 6: When factoring by grouping, the two resulting binomials need to be identical! These matching binomials are now the COMMON FACTOR, and can be factored out...and what is left become the components of the second bracket.

Another process you can use is called the "ac" method

Steps for factoring $a x^{2}+b x+c, \quad a \neq 1$ by "ac" method

Step 1: If needed, re-order the terms in descending powers of the variable
Step 2: Check to see if you can factor out a GCF. This step is MANDATORY.
Step 3: Find two numbers that multiply to equal $a c$ and add to equal b (multiply to the product (\times) of the "outsides" first \times last, and add to the middle!)
Step 4: Write the expression as two factors using the numbers you found in step 3 and each with a denominator of "a"
Step 5: Now simplify each fraction in the brackets
Step 6: If a fraction remains, the denominator becomes the coefficient of the x term in that binomial.

AC method
Example 1 - Factor: $\quad 4 x^{2}+11 x+6$

$$
x^{2}+11 x+24
$$

$(1,24)$
$(2,12)$
$8 \times 3=24$
$(3,8)$
$(4,6)$

Decomp method
$4 x^{2}+11 x+6$
$\frac{4 x^{2}+8 x}{4 x(x+2)+3 x+6}$
$(x+2)(4 x+3)$

Example 2 - Factor: $\begin{aligned} &-7 m-10+6 m^{2} \\ & \text { Reorder (6) } m^{2}-7 m-10\end{aligned}$ $m^{2}-7 m-60$ $-12 \times 5=-60$
$-12+5=-7$ $\left(m-\frac{12}{6}\right)\left(m+\frac{5}{6}\right)$ $(m-2)(6 m+5)$
$6 m^{2}-7 m-10$
$6 m^{2}-12 m+5 m-10$ $6 m(m-2)+5(m-2)$ $(m-2)(6 m+5)$

Example 3 - Factor:

$$
\begin{aligned}
& 8 p^{2}-18 p-5 \\
& p^{2}-18 p-40 \\
& \frac{-20}{-20}+\frac{2}{2}=-40 \\
& \left.\left(p-\frac{20}{8}\right)^{2}\right)^{4}\left(p-\frac{2}{8}\right)^{-2} \\
& \left(p-\frac{5}{2}\right)\left(p-\frac{1}{4}\right) \\
& (2 p-5)(4 p-1)
\end{aligned}
$$

$$
\begin{gathered}
\text { Decomp } \\
8 p^{2}-18 p-5 \\
8 p^{2}+2 p-20 p-5 \\
2 p(4 p+1)-5(4 p+1) \\
(4 p+1)(2 p-5)
\end{gathered}
$$

Example 4 - Factor: $\quad 24 x^{2}-10 x y-4 y^{2}$ put y^{\prime} ' at end of brackets

$$
\text { GCA } \left.2(12) x^{2}-5 x y-2 y^{2}\right)
$$

$$
2\left(x^{2}-5 x y-24 y^{2}\right)
$$

$$
\frac{-8}{} \times 3=-24
$$

$$
\frac{-8}{\left(x-\frac{8}{12} y\right)\left(x+\frac{3}{12} y\right)}
$$

$$
2\left(x-\frac{2}{3} y\right)\left(x+\frac{1}{4} y\right)
$$

$$
2(3 x-2 y)(4 x+y)
$$

De comp

$$
\begin{aligned}
& 2\left(12 x^{2}-5 x y-2 y^{2}\right) \\
& 2\left(12 x^{2}-8 x y+3 x y-2 y^{2}\right) \\
& 2[4 x(3 x-2 y)+y(3 x-2 y)] \\
& 2(3 x-2 y)(4 x+y)
\end{aligned}
$$

Decamp
$-4 x\left(4 x^{2}-5 x-6\right)$

$$
-4 x\left(4 x^{2}+3 x-8 x-6\right)
$$

$$
-4 x[x(4 x+3)-2(4 x+3)]
$$

$$
-4 x(4 x+3)(x-2)
$$

5.1 - Solving Quadratic Equations by Factoring

Recall that you can often find the roots of a quadratic equation by factoring when in general form $a x^{2}+b x+c=0$. Remember, the roots or solutions of the quadratic equation correspond to the zeros of the quadratic function, and the \mathbf{x}-intercepts of the parabola. There may be \qquad or 2 solutions to a quadratic equation.

Solving

 quadratic equations by factoringif $a=1$

Steps:
\rightarrow hishest to lowest power

1) Get everything to one side of the equation so that only zero is on the other.
2) Identify a, b, and c values, and factor accordingly.
3) The roots are the x-values that will make the product of the binomials zero. If either of the binomials equal zero, then the product of the binomials will equal zero (this is called the Zero Factor Property). Therefore, identify the x values that make each binomial equal to zero.

Example 1 - Solve and check $x^{2}+3 x=-2$
$1 \times 2=2$
$1+2=3$

$$
\begin{aligned}
& x^{2}+3 x+2=0 \\
& a=1 \quad b=3 \quad c=2 \\
& \begin{array}{ll}
(x+1)(x+2)=0 \\
x+1 & \text { oposite \# will zero } \\
x+1=0 & x+2=0 \\
-1 & -2 \\
-1 & x=-2
\end{array}
\end{aligned}
$$

Check:

Example 2 - a) Solve $x^{2}-8 x-40=8$

$$
\begin{aligned}
& x^{2}-8 x-48=0 \\
& (x-12)(x+4)=0 \\
& x=12 \quad x=-4
\end{aligned}
$$

c) Solve ${ }_{\frac{x_{1}^{2}}{2}}^{x^{2}}-\stackrel{x^{2}}{x}-\stackrel{x^{2}}{4}=0^{x_{2}}$ clear fractions

$$
x^{2}-2 x-8=0
$$

$$
(x-4)(x+2)=0
$$

$$
x=4 \quad x=-2
$$

$$
\begin{aligned}
& \begin{aligned}
& \frac{-12}{-12} \times \frac{4}{4}=-48 \\
&=-8
\end{aligned} \\
& -12+4=-8
\end{aligned}
$$

Sketch the Graph:

b) Solve $\frac{2 x^{2}}{2}+\frac{6 x}{2}-\frac{108}{2}=\frac{0}{2}$ simplified
$x^{2}+3 x-54=0$
$(x+9)(x-6)=0$
$x=-9 \quad x=6$

> | if $a \neq 1$ |
| :--- |
| |
| If $c=0$ |
| difference |

When $a \neq 1$, factor by "decomposition" or "ac" method.

$$
\left(x-\frac{3}{3}\right)\left(x-\frac{2}{3}\right)=0 \quad-3+\frac{-2}{}=-5
$$

$$
\begin{aligned}
(x-1)(3 x-2) & =0 \\
3 x-2 & =0
\end{aligned}
$$

$$
\begin{array}{cc}
x=0 & 3 x-2=0 \\
x-1 & =+2 \\
x=1 & \frac{3 x}{3}=\frac{2}{3}
\end{array}
$$

$$
\begin{aligned}
& x+2=+2 \\
& \frac{3 x}{3}=\frac{2}{3} \\
& x=\frac{2}{3}
\end{aligned}
$$

Example 4 - Solve $\underset{+5 x}{3 x^{2}}=-\underset{+5 x}{-5 x}$ organized
$\operatorname{gcf} X$

$$
3 x^{2}+5 x=0
$$

Example 5 -Solve $b=0$? of squares

GCA $=2$

Trick for finding roots:

$$
\begin{array}{ll}
(3 x-2)=0 & \begin{array}{l}
\text { brig g the } \\
\text { coefficient }
\end{array} \\
\left(x-\frac{2}{3}\right)=0 & \begin{array}{c}
\text { back } \\
\text { and } \\
\text { change the } \\
\text { sign }
\end{array} \\
x=+\frac{2}{3} & \text { sign }
\end{array}
$$

$$
\begin{array}{ll}
\text { c) } 49-4 x^{2}=0 \quad \text { reorder } \\
\begin{array}{l}
-4 x^{2} \\
\frac{-1}{-1} \\
49 \\
4 x^{2}-49 \\
-1 \\
-1 \\
-1
\end{array} \\
\sqrt{4 x^{2}}=2 x \\
\sqrt{49}=7 \\
(2 x+7)(2 x-7) \\
x= \pm \frac{7}{2}
\end{array}
$$

5.2A - Solving Quadratic Equations by Square Root Principle and Completing the Square

square root principle

When there is no $b x$ term in a quadratic equation, first look to see if it is a difference of squares (is each term a perfect square, and is there a subtraction sign in between?). If it is not a difference of squares, it can be solved by the square root principle.

The general form of a quadratic equation that you could solve using the square root principle is $a x^{2}+c=0$. or $a(x-h)^{2}+k=0$

Example 1 -Solve $9 y^{2}-22=0$

$$
a x^{2}+c=0
$$

1) Get everything that isn't squared to one side.
2) Square root both sides.
3) Consider both the positive and negative square roots.
4) Simplify any radical solutions as much as possible in exact form.

$$
9 y^{2}-22=0
$$

$$
\sqrt[\pm]{y^{2}}= \pm \sqrt{\frac{2 z}{9}}
$$

$$
\begin{aligned}
& \frac{9 y^{2}}{9}=\frac{22}{9} \\
& y^{2}=\frac{22}{9}
\end{aligned}
$$

$$
\begin{aligned}
& y= \pm \sqrt{\frac{22}{9}}=\frac{\sqrt{22}}{\sqrt{9}} \\
& y= \pm \frac{\sqrt{22}}{3} \begin{array}{c}
\text { remove } \\
\text { any perfect } \\
\text { squares }
\end{array}
\end{aligned}
$$

no bx term -
Example 2 - Solve:
a) $2 x^{2}-11=87$
b) $\frac{50 y^{2}}{50}=\frac{72}{50} \div 2$

$$
\begin{aligned}
& \pm \sqrt[5]{y^{2}} \stackrel{ \pm}{\frac{36}{25}} \\
& y= \pm \frac{\sqrt{36}}{\sqrt{25}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{2 x^{2}}{2}=\frac{98}{2} \\
\pm \sqrt{x^{2}} \\
=\sqrt[\pm]{49} \\
x= \pm 7
\end{gathered}
$$

$$
y= \pm \frac{6}{5}
$$

c) $\sqrt[\pm]{(x+3)^{2}} \stackrel{ \pm}{=} \sqrt{16}$
$x+3= \pm 4$

$$
\text { e) } \begin{aligned}
\sqrt[\pm]{(x-1)^{2}} \begin{array}{l}
= \\
12 \\
x-1 \\
+1
\end{array}= \pm \sqrt{12} \\
x=1 \pm \sqrt{12} \\
\text { or } \\
x=1 \pm 2 \sqrt{3}
\end{aligned}
$$

completing the square when $a=1$

Sometimes factoring quadratic equations is not possible, as you cannot find the two numbers that multiply to c (or $a c$) and add to b. When this is the case, you can still solve the quadratic equation by a method called completing the square.

Example 3 - Solve $x^{2}-24=-10 x$ by completing the square. This example can be easily solved by factoring, but we will use it to introduce how to complete the square.

1) Get c to one side of the equation.
2) If the a value is 1 , find the b value, half it, and square it.
3) Add the number from step 2 to BOTH sides of the equation.
4) Factor the trinomial on the left (we created a perfect square trinomial, so it will lead to 2 brackets that are exactly the same).
5) Solve using the square root property.

$$
\begin{aligned}
& \text { (1) }{ }^{2}+24=-10 x+10 x \\
& \begin{array}{cc}
x^{2}+10 x-24 & =0 \\
+24 & +24
\end{array} \\
& \text { (2) } x^{2}+10 x=24 \quad b=10 \quad 10 \div 2=5 \quad 5^{2}=25 \\
& \text { (3) } x^{2}+10 x+25=24+25 \\
& \text { (4) }(x+5)^{2}=49 \\
& \text { (5) } \sqrt{(x+5)^{2}}=\sqrt[3]{49} \\
& \begin{array}{l}
x+5= \pm 7 \\
-5=-5 \\
x=-5+7 \text { or }-5-7 \\
x=2,-12
\end{array}
\end{aligned}
$$

Example 4 - Solve by completing the square. Express the solutions in exact form.

$$
\begin{aligned}
& \text { a) } \begin{array}{rl}
w^{2}-4 w & -11=0 \\
+11 & b=-\frac{4}{2}=-2
\end{array} \\
& \text { b) } x^{2}+5 x+7=-7 \\
& \text { c) } m^{2}-5 m+3=0 \quad 0 \\
& \omega^{2}-4 \omega^{+4}=11^{+4} \omega^{(-2)^{2}=4} \\
& \begin{array}{c}
x^{2}+5 x=-7 \\
4 \frac{5}{2}=\left(\frac{5}{2}\right)^{2} \rightarrow \frac{25}{4} \\
x^{2}+5 x+\frac{25}{4}=-7+\frac{25}{4}
\end{array} \\
& m^{2}-5 m=-3 \\
& 4 \frac{-5}{2}\left(\frac{-5}{2}\right)^{2}=\frac{25}{4} \\
& \pm \sqrt{w^{2}-4 w+4=15}+\sqrt[\pm]{(w-2)^{2}}=\sqrt[4]{15} \\
& \begin{array}{rc}
w-2 & = \pm \sqrt{15} \\
+2 & +2
\end{array} \\
& w=2 \pm \sqrt{15} \\
& \begin{array}{l}
\left(x+\frac{5}{2}\right)^{2}=\frac{-28}{4}+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{-3}{4} \\
\text { try to } \begin{array}{l}
\text { tan }+5 \\
\pm 5 \\
\text { a negative }
\end{array}
\end{array} \\
& m^{2}-5 m+\frac{25}{4}=\frac{-3 x^{4 v}}{14 y}+\frac{25}{4}=\frac{-12}{4}+\frac{25}{4} \\
& \pm \sqrt{\left(m^{2}-\frac{5}{2}\right)^{2}}=\sqrt[\pm]{\frac{13}{4}} \\
& m-\frac{5}{2}=\frac{ \pm \sqrt{13}}{2}+\frac{5}{2} \\
& +\frac{5}{2} \\
& m=\frac{5 \pm \sqrt{13}}{2}
\end{aligned}
$$

5.2B - Solving Quadratic Equations by Completing the Square ($a \neq 1$)

completing the square when $a \neq 1$

If $a \neq 1$, there are a few more considerations when completing the square.
Example 1 - Solve $2 x^{2}-5 x-1=0$ by completing the square

1) Get c to one side of the equation.

2) Divide both sides by the a value to leave $x^{2}+b x$ on the left side of the equation. THEN find the b value, half it, and square it.
3) Add the number from step 3 to BOTH sides of the equation.
4) Factor the resulting trinomial on the left.
5) Solve using the square root principle and answer in exact form.

$$
2 x^{2}-5 x-1=0
$$

(1) $2 x^{2}-5 x=1$
(2) $2\left(x^{2}-\frac{5}{2} x\right)=1$
(3) $\frac{2}{2}\left(x^{2}-\frac{5}{2} x\right)=\frac{1}{2} \begin{aligned} & 4-\frac{5}{2} \div 2=-\frac{5}{2} \times \frac{1}{2}=\frac{-5}{4}\end{aligned}$

$$
\left(\frac{-5}{4}\right)^{2}=\frac{25}{16}
$$

$x-\frac{5}{4}=\frac{ \pm \sqrt{33}}{4+5 / 4}$

$$
+5 / 4
$$

(4) $x^{2}-\frac{5}{2} x+\frac{25}{16}=\frac{1}{2^{x 8}}+\frac{25}{16}$
$x=\frac{5 \pm \sqrt{33}}{4}$

$$
\begin{aligned}
\text { factor } \downarrow & =\frac{8}{16}+\frac{25}{16} \\
\text { (5) }\left(x-\frac{5}{4}\right)^{2} & =\frac{33}{16}
\end{aligned}
$$

Example 2 - Solve by completing the square: $3 x^{2}-2=-4 x$

$$
\begin{aligned}
\text { Reorder }: \frac{3 x^{2}}{3}+\frac{4 x}{3}=\frac{2}{3} \\
\qquad \begin{aligned}
& x^{2}+\frac{4}{3} x=\frac{2}{3} \\
& \frac{4}{3} \div 2=\frac{4}{3} \times \frac{1}{2}=\frac{4}{6} \div \frac{2}{\div 2}=\frac{2}{3} \\
&\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \\
& x^{2}+\frac{4}{3} x+\frac{4}{9}=\frac{2^{x 3}}{3} \times \frac{4}{9} \rightarrow \frac{6}{9}+\frac{4}{9}=\frac{10}{9} \\
& \pm\left(x+\frac{2}{3}\right)^{2}=\sqrt{\frac{10}{9}} \\
& x+\frac{2}{3}-\frac{2}{3}=\frac{ \pm \sqrt{10}}{3}-\frac{2}{3} \\
& x=\frac{-2 \pm \sqrt{10}}{3}
\end{aligned}
\end{aligned}
$$

An easy way to half a fraction
is to double
the denominator.

Example 3 - Solve by completing the square. Answer to the nearest hundredth.

$$
\begin{aligned}
& -2 x^{2}-3 x+7=0 \\
& \frac{-2 x^{2}}{-2}-\frac{3 x}{-2}=\frac{-7}{-2} \\
& x^{2}+\frac{3}{2} x=\frac{7}{2} \\
& \rightarrow \frac{3}{2} \div 2=\frac{3}{2} \times \frac{1}{2}=\frac{3}{4}^{2}=\frac{9}{16} \\
& x^{2}+\frac{3}{2} x+\frac{9}{16}=\frac{7^{28}}{2 x}+\frac{9}{16} \rightarrow \frac{56}{16}+\frac{9}{16} \\
& \pm \sqrt{\left(x+\frac{3}{4}\right)^{2}=\sqrt[\pm]{\frac{65}{16}}} \\
& x+\frac{3}{4}-\frac{3}{4}=\frac{ \pm \sqrt{65}}{4}-\frac{3}{4} \\
& x=\frac{-3 \pm \sqrt{65}}{4} \\
& x=(-3+\sqrt{65}) \div 4 \cong 1.27 \\
& x=(-3-\sqrt{64}) \div 4 \cong-2.77 \\
& x \cong 1.27,-2.77
\end{aligned}
$$

Example 4 - Solve by completing the square: $3 x^{2}+6 x-1=0$

$$
\begin{aligned}
& \frac{3 x^{2}}{3}+\frac{6 x}{3}=\frac{1}{3} \\
& x^{2}+2 x=\frac{1}{3} \\
& 42 \div 2=1 \quad 1^{2}=1 \\
& \pm \sqrt{(x+1)^{2}=\sqrt{\frac{4}{3}}} \begin{array}{l}
x+2 x+\frac{1}{3}+\frac{1 x^{3}}{x^{3}} \rightarrow \frac{1}{3}+\frac{3}{3}=\frac{4}{3}
\end{array} \\
& x=-1 \pm \frac{2}{\sqrt{3}} \quad \begin{array}{l}
\text { This format is ok } \\
\text { we will learn how } \\
\text { to simplify radicals } \\
\text { in a future chapter }
\end{array} \\
& x=\frac{-3 \pm 2 \sqrt{3}}{3} \quad
\end{aligned}
$$

5.3 - The Quadratic Formula

Quadratic equations can be solved by graphing, factoring (5.1), the square root property (5.2) and/or completing the square (5.2). Each of these methods have advantages and limitations.

Any quadratic equation can be solved using something called the quadratic formula. If the quadratic equation is in general form $\left(a x^{2}+b x+c=0\right)$, the quadratic formula is:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The derivation of the quadratic formula can be found in your workbook on p.85.

$$
a x^{2}+b x+c=0
$$

Example 1 - Solve $2 x^{2}-5 x+2=0$ using the quadratic formula
$a=2$
$b=-5$
$c=2$

$$
\begin{aligned}
& \frac{x=-(-5) \pm \sqrt{(-5)^{2}-4(2)(2)}}{2(2)} \\
& x=\frac{5 \pm \sqrt{25-16}}{4} \\
& x=\frac{5 \pm \sqrt{9}}{4} \rightarrow \frac{5 \pm 3}{4} \longrightarrow \frac{5-3}{4}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Example 2 - Solve $3 x^{2}-x=-1$ using the quadratic formula

$$
\mathrm{can}^{\prime} \mathrm{t}
$$

$a=3$
$b=-1$
$c=1$

$$
\begin{aligned}
& 3 x^{2}-x+1=0 \\
& x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(3)(1)}}{2(3)} \\
& x=\frac{1 \pm \sqrt{1-12}}{6}
\end{aligned}
$$

There could be 0,1 , or 2 resulting roots, depending on the discriminant, the expression under the square root $\left(b^{2}-4 a c\right)$. Solutions can be written in simplest radical form, or decimal form.

How would the discriminant determine the nature of the roots (the number of roots)?
If $b^{2}-4 a c>0$, there will be two different roots positive $(2 x$-intercepts)

If $b^{2}-4 a c<0$, no solution, no (real) roots
negative
negative (0x-intercepts)

* you cannot square a negative number

Example 3 - Determine the nature of the roots, and then solve $3 x^{2}+2 x-4=0$ using the quadratic formula
$b^{2}-4 a c$
$(2)^{2}-4(3)(-4)$
$4+48$
$D=52$
pos so 2 solutions

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \rightarrow D \\
& x=\frac{-2 \pm \sqrt{52}}{2(3)} \\
& x=\frac{-2 \pm \sqrt{52}}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \text { clear the fraction } \\
& \\
& b^{2}-4 a c \\
&=(-12)^{2}-4(1)(36) \\
&= 144-144 \\
&= 0
\end{aligned} \\
\therefore & \\
\therefore & 1 \text { solution }
\end{aligned}
$$

Example 5 - Solve using the quadratic formula. Leave answers in exact form.

$$
\begin{array}{rl}
\text { a) } x(x-2) & =1 \\
x^{2}-2 x-1 & =0 \\
a=1 \\
b=-2 \\
c=-1 & x
\end{array} \begin{aligned}
2 a & \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x & =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)} \\
x & =\frac{2 \pm \sqrt{4+4}}{2} \\
x & =\frac{2 \pm \sqrt{8}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \frac{x^{2}}{2}-\frac{5 x}{6}=\frac{3(6)}{2} \\
& 3 x^{2}-5 x=-9 \\
& 3 x^{2}-5 x+9=0 \\
& a=3 \\
& b=-5 \\
& c=9 \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(9)}}{2(3)} \\
& x=\frac{5 \pm \sqrt{25-108}}{6} \\
& x=\frac{5 \pm \sqrt{-83}}{6}
\end{aligned}
$$

No solutions

Example 1 - The sum of a number and twice its reciprocal $(15) \frac{9}{2}$. Find the number.

$$
t
$$

$$
\begin{aligned}
& (2 x) \\
& x+2^{(2 x)}\left(\frac{1}{x}\right)=\frac{9}{2}(\cdot 2 x)
\end{aligned}
$$

$$
2 x^{2}+4=9 x=9 x
$$

\rightarrow check to see if it factors?

$$
\begin{aligned}
& 2 x^{2}-9 x+4=0 \\
& x^{2}-9 x+8=0 \\
& \left(x-\frac{8}{2}\right)\left(x-\frac{1}{2}\right)=0 \\
& (x-4)(2 x-1)=0 \\
& x=4, \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-8}{-8} \times \frac{-1}{-1}=8 \\
& \frac{-8}{-1}=-9
\end{aligned}
$$

The numbers could be 4 or $\frac{1}{2}$

Example 2 - The length and width of a rectangular sheet of plywood is 6 ft by 9 ft . How much must be removed equally from the length and width to reduce the area to half its original size?

$$
\begin{aligned}
& \text { old } \text { area }=6 \times 9=54 \\
& \text { new area }=\frac{1}{2}(54)=27
\end{aligned}
$$

new Area $\rightarrow(9-x)(6-x)=27$

$$
\begin{aligned}
& 54-9 x-6 x+x^{2}=27 \\
& x^{2}-15 x+27=0 \\
& a=1 \quad b=-15 \quad c=27
\end{aligned}
$$

$$
x=\frac{15 \pm \sqrt{(-15)^{2}-4(1)(27)}}{2(1)}
$$

$$
\begin{aligned}
& x=\frac{15+\sqrt{117}}{2} \\
& x=12.408 \mathrm{To} \mathrm{big} \\
& \text { 个. } \\
& \text { cunt over } 12 \mathrm{ft} \\
& \text { since board is only } 9 \mathrm{ft} \times 6 \mathrm{ft}
\end{aligned}
$$

$$
x=\frac{15-\sqrt{117}}{2}
$$

and width.
$x=2.092$
New dimensions: 6.91×3.91

Example $3-\mathrm{A} 15 \mathrm{~cm}$ by 45 cm painting has a frame surrounding it. If the frame is the same width all around, and the total area of the frame is $325 \mathrm{~cm}^{2}$, how wide is the frame?

$$
\begin{aligned}
& \text { Small } A=15 \times 45=675 \\
& \text { frame } A=325 \\
& \text { Total } A=675+325=1000
\end{aligned}
$$

$$
\text { Area }=L X w
$$

$$
(45+2 x)(15+2 x)=1000
$$

$$
675+90 x+30 x+4 x^{2}=1000
$$

$$
-1000 \quad-1000
$$

$$
\begin{aligned}
& 4 x^{2}+120 x-325=0 \\
& a=4 \quad b=120 \quad c=-325
\end{aligned}
$$

$$
x=\frac{-120 \pm \sqrt{120^{2}-4(4)(-325)}}{2(4)}
$$

$$
x=\frac{-120 \pm \sqrt{19600}}{8}
$$

$$
x=\frac{-120 \pm 140}{8}
$$

The width of the frame is 2.5 cm

$$
x=\frac{-120+140}{8}
$$

$$
x=\frac{-120-140}{8}
$$

Example 4 - A farmer uses 90 m of fencing to enclose two adjacent rectangular pens. Find the dimensions that enclose a total area of $300 \mathrm{~m}^{2}$.

$$
\text { Fencing }=3 x+2 y
$$

$$
\begin{gathered}
3 x+2 y= \\
-3 x
\end{gathered} \underset{-3 x}{90 m}
$$

$$
\begin{aligned}
& \frac{2 y}{2}=\frac{-3 x}{2}+\frac{90}{2} \\
& y=\frac{-3}{2} x+45
\end{aligned} \quad X\left(-\frac{3}{2} x+45\right)=300
$$

$$
\text { (2) } \frac{3}{2} x^{2}+45 x=300 \rightarrow \text { char fraction }
$$

$$
\begin{aligned}
-3 x^{2}+90 x= & 600 \\
-600 & -600
\end{aligned}
$$

$$
\frac{-3 x^{2}}{-3}+\frac{90 x}{-3} \frac{-600}{-3}=\frac{0}{-3}
$$

$$
x^{2}-30 x+200=0
$$

The dimensions

$$
(x-10)(x-20)
$$

are either $10 \mathrm{~m} \times 30 \mathrm{~m}$

$$
x=10,20
$$

or $20 \mathrm{~m} \times 15 \mathrm{~m}$.

$$
\begin{aligned}
& \text { also find } y \\
& y=\frac{-3}{2} x+45 \\
& y=\frac{-3}{2}(10)+45 \quad \text { or } \quad \frac{-3}{2}(20)+45 \\
& y=30
\end{aligned} \quad y=15
$$

