\qquad

Chapter 7 Notes

Inequalities

Date	Topic/Lesson	Assignment
	7.3A - Inequalities in 1 Variable Part 1	After Notes - 7.3A Worksheet AND p.270: 2all
	7.3 B - Inequalities in 1 Variable Part 2	After Notes - 7.3B Worksheet AND p.271: 3a-e
	7.5 - Applications of Quadratic Inequalities	After Notes - 7.5 Worksheet AND p281:13, 14
	Practice Test	Chapter 7 Practice Test
	Review	p.283: 4, 5, 8, 10, 12
	Unit Test	Chapter 7 Unit Test

Warmup

What does each symbol mean? $>\quad \geq \leq$

How do you say this aloud? $\quad x \geq 4$

What are some possible answers?

What is the primary difference between an equation and an inequality?

Solving Linear Inequalities

How do we read these inequalities (from left to right)? $5>2 \quad-3<-1$

Example 2a-What are some possible answers to $-2 x<6$?

Example 2 b - Solve the following inequality and graph on a number line: $-2 x<6$

How is solving an inequality like solving an equation? How is it different?

Quadratic Inequalities

Solving quadratic inequalities requires a new technique, because we cannot just get " x by itself" on one side of the inequality.

There are two approaches we can take to solving quadratic inequalities:
\qquad and \qquad

Solving Quadratic Inequalities by Graphing

Example 3 - Use the quadratic function $f(x)=x^{2}-x-6$ and its graph to answer the following:
a) Solve $x^{2}-x-6=0$
b) Solve $x^{2}-x-6<0$ and graph on a number line.
c) Solve $x^{2}-x-6>0$ and graph on a number line.

From the graph, you can see the parabola has
 x-intercepts at \qquad and \qquad .
a) Therefore, $x^{2}-x-6=0$ when \qquad

The parabola is BELOW the x-axis when $\mathrm{x} . .$. .
b) Therefore, $x^{2}-x-6<0$ when \qquad

The parabola is ABOVE the x-axis when x...
c) Therefore, $x^{2}-x-6>0$ when \qquad

Example 4 - From the graph of the quadratic function $f(x)=x^{2}-9$, state the solution to the following and graph on a number line:
a) $x^{2}-9=0$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| -10 | -5 | 0 | 5 | 10 |

b) $x^{2}-9 \leq 0$

c) $x^{2}-9<0$

d) $x^{2}-9 \geq 0$

-10	-5	0	5	10

e) $x^{2}-9>0$

-10	-5	0	5	10

Example 5 - From the graph of the quadratic function $f(x)=x^{2}-6 x+9$, state the solution to the following and graph on a number line:
a) $x^{2}-6 x+9=0$

b) $x^{2}-6 x+9 \leq 0$

c) $x^{2}-6 x+9<0$

d) $x^{2}-6 x+9 \geq 0$

e) $x^{2}-6 x+9>0$

-10	-5	0	5	10

Example 1 - Solve $x^{2}+2 x>8$ by graphing, and then using test intervals. Graph the solution on a number line.

Graphing Steps

1. Get everything to the left side of the inequality so that zero is on the right.
2. Find the roots (x-intercepts) of the quadratic.
3. Sketch a graph and use the visual to solve the inequality.
\rightarrow if the quadratic is >0, find the domain where the graph is above the x-axis
\rightarrow if the quadratic is <0, find the domain where the graph is below the x-axis

Test
Interval
s Steps

1. Set inequality to zero. Find the critical numbers (the zeros) of the quadratic.
2. Use the critical numbers to split the domain (x-values) into separate test intervals, and make an x-axis diagram of the resulting test intervals. Label each interval.
3. Test a value from each interval using the original inequality.

Example 2 - Solve $2 x^{2}-7 x-15 \leq 0$ using both methods and graph the solution on a number line.
$*_{\text {if }}$ the quadratic is ≥ 0, find the domain where the graph is above or on the x-axis
$*_{\text {if }}$ the quadratic is ≤ 0, find the domain where the graph is below or on the x-axis

Graphing:

Test Intervals:

Example 3 - Solve $x^{2}+1>3 x$. Then graph the solution on a number line.

7.5 - Applications of Quadratic Inequalities

Example 1 - The height in meters of a projectile shot from the top of a building is given by $h(t)=-16 t^{2}+60 t+25$, where t represents the time in seconds the projectile is in the air. Find the time interval that the projectile is above 25 m , to the nearest hundredth.

Example 2 - The sale price of a stereo is given by the function

$$
S(x)=200-0.1 x, \quad 0 \leq x \leq 2000
$$

where x is the number of stereos produced each day. It costs $\$ 18000$ per day to operate the factory and $\$ 15$ for material to produce each stereo.
a) Find the equation for the daily revenue.
b) Find the equation for the daily cost of producing stereos.
c) Find the interval that produces a profit.

