Chapter 7 Notes Inequalities

Date	Topic/Lesson	Assignment		
	7.3A - Inequalities in 1 Variable Part 1	After Notes – 7.3A Worksheet AND		
		p.270: 2all		
	7.3B - Inequalities in 1 Variable Part 2	After Notes – 7.3B Worksheet AND		
		p.271: 3a-e		
	7.5 - Applications of Quadratic Inequalities	After Notes – 7.5 Worksheet AND		
		p281: 13, 14		
	Practice Test	Chapter 7 Practice Test		
	Review	p.283: 4, 5, 8, 10, 12		
	Unit Test	Chapter 7 Unit Test		

7.3A – Inequalities in One Variable, Part 1

Warmup	How do we read these inequalities (from left to right)? $5 > 2$ $-3 < -1$					
	What does each symbol mean? > < ≥ ≤					
	How do you say this aloud? $x \ge 4$					
	What are some possible answers?					
	What is the primary difference between an equation and an inequality ?					
Solving Linear Inequalities	Example 1 – Solve the following inequality and graph on a number line: $3x - 7 < -5$					
	Example $2a - What$ are some possible answers to $-2x < 6$?					
	Example 2b – Solve the following inequality and graph on a number line: $-2x < 6$					
	How is solving an inequality like solving an equation? How is it different?					

Quadratic Inequalities

Solving quadratic inequalities requires a new technique, because we cannot just get "x by itself" on one side of the inequality.

There are two approaches we can take to solving quadratic inequalities:

and	

Solving Quadratic Inequalities by Graphing

Example 3 – Use the quadratic function $f(x) = x^2 - x - 6$ and its graph to answer the following:

a) Solve
$$x^2 - x - 6 = 0$$

- b) Solve $x^2 x 6 < 0$ and graph on a number line.
- c) Solve $x^2 x 6 > 0$ and graph on a number line.

From the graph, you can see the parabola has

x-intercepts at _____ and _____.

a) Therefore,
$$x^2 - x - 6 = 0$$
 when _____

The parabola is BELOW the x-axis when x....

b) Therefore,
$$x^2 - x - 6 < 0$$
 when

The parabola is ABOVE the x-axis when x...

c) Therefore,
$$x^2 - x - 6 > 0$$
 when _____

Example 4 – From the graph of the quadratic function $f(x) = x^2 - 9$, state the solution to the following and graph on a number line:

d)
$$x^2 - 9 \ge 0$$

e)
$$x^2 - 9 > 0$$
 -10

Example 5 – From the graph of the quadratic function $f(x) = x^2 - 6x + 9$, state the solution to the following and graph on a number line:

a)
$$x^2 - 6x + 9 = 0$$

b)
$$x^2 - 6x + 9 \le 0$$

e)
$$x^2 - 6x + 9 > 0$$

Example 1 – Solve $x^2 + 2x > 8$ by graphing, and then using test intervals. Graph the solution on a number line.

Graphing Steps

- 1. Get everything to the left side of the inequality so that zero is on the right.
- 2. Find the roots (*x*-intercepts) of the quadratic.
- 3. **Sketch** a graph and use the visual to solve the inequality.
 - → if the quadratic is > 0, find the domain where the graph is **above** the x-axis
 - → if the quadratic is < 0, find the domain where the graph is **below** the x-axis

Test Interval s Steps

- 1. Set inequality to zero. Find the critical numbers (the zeros) of the quadratic.
- 2. Use the critical numbers to split the domain (x-values) into separate test intervals, and make an x-axis diagram of the resulting test intervals. Label each interval.
- 3. Test a value from each interval using the **original** inequality.

Example 2 – Solve $2x^2-7x-15 \le 0$ using both methods and graph the solution on a number line.

*if the quadratic is ≥ 0 , find the domain where the graph is **above or on** the x-axis

Test Intervals:

Example 3 – Solve $x^2 + 1 > 3x$. Then graph the solution on a number line.

^{*}if the quadratic is \leq 0, find the domain where the graph is **below or on** the x-axis **Graphing:**

7.5 – Applications of Quadratic Inequalities

Example 2 – The sale price of a stereo is given by the function

$$S(x) = 200 - 0.1x, \quad 0 \le x \le 2000$$

where x is the number of stereos produced each day. It costs \$18 000 per day to operate the factory and \$15 for material to produce each stereo.

- a) Find the equation for the daily revenue.
- b) Find the equation for the daily cost of producing stereos.
- c) Find the interval that produces a profit.