Chapter 8 Notes Trigonometry

Topic/Lesson	Assignment
8.0 - Trig Review	After Notes ex 1 – 8.0 Trig. Review Worksheet #1-2
	After Notes ex 3 – 8.0 W/S #3-5
	After Notes ex 4 – 8.0 W/S #6
8.1 - Angles and their Measure	After Notes ex 2 – p.291: 1, 2, 3a-h, 5left
	After Notes ex 5 – p.293: 7, 9a-h, 10, 11
8.2 - The Three Trig Functions	After Notes ex 2 – p.300: 1, 2left, 3a-f
	After Notes ex 4 – p.303: 5a-d, 6a-d
8.3A - Special Angles Part 1	Warm-up before Notes – p.312: 1(a-f), 2(a-f),
	After Quadrantal angles – p.313: 3(a-f)
	After Notes – p.313: 3(g-p)
8.3B - Special Angles Part 2	After Notes ex 2 – p.313: 4
	After Notes ex 3 – p.314: 5a-h
8.5 - The Sine Law	After Notes – p.330: 6abcfhi
8.6 - The Cosine Law	After Notes ex 1 – p.336: 2
	After Notes ex 3 – p.338: 7acde, 8abe
Test Prep	Chapter 8 Practice Test
Review	p.341: 1left, 2a-d, 3, 4left, 6abc, 7bdfhj, 9a-e
Chapter Test	Chapter 8 Test
	8.0 - Trig Review 8.1 - Angles and their Measure 8.2 - The Three Trig Functions 8.3A - Special Angles Part 1 8.3B - Special Angles Part 2 8.5 - The Sine Law 8.6 - The Cosine Law Test Prep

Example 1 – Solve each to the nearest hundredth.

a)
$$\cos 42^{\circ}$$
 b) $\tan 67^{\circ} = \frac{x}{7}$ c) $\sin \theta = \frac{5}{9}$ d) $\cos 35^{\circ} = \frac{8}{x}$

In order to solve a right triangle, you must find the measurement of all three sides and all three angles.

Example 2 - Solve $\triangle ABC$ to the nearest tenth.

Example 3 – Sketch & solve $\triangle ABC$ to the nearest tenth where $< C=90^{\circ}$, c=95 cm & b=44 cm

An angle that is drawn in **standard position** must have its vertex at the origin of the Cartesian plane, and its initial arm must coincide with the positive *x*-axis.

To draw angles in standard position, we use an **initial arm** (always the positive *x*-axis) and a **terminal arm** (the final position after a rotation). The angle is labeled $\boldsymbol{\theta}$ (*theta*). The **vertex** of the angle must be at the origin (0, 0) of a Cartesian plane. Positive angles are measured in a counterclockwise direction. Here is an example:

angles in standard position

8.1 – Angles and Their Measure

8.2 – The Three Trigonometric Functions

A **45°-45°-90° triangle** with legs of each 1 unit has a hypotenuse of $\sqrt{2}$.

Example 3 – Determine the measure of θ , to the nearest degree, given

a) $\sin \theta = -0.8090$, where $0^\circ \le \theta < 360^\circ$ b) $\tan \theta = -0.7565$, where $0^\circ \le \theta < 360^\circ$

	So far, you have learned how to use trigonometry when working with right triangles. Now, you will learn how to use trigonometry for oblique triangles (non-right triangles).
developing the sine law	Draw an oblique triangle <i>ABC</i> and label the sides <i>a</i> , <i>b</i> , & <i>c</i> (opposite the respective corresponding angles). Then, draw a line (call it <i>h</i>) from <i>B</i> to <i>b</i> , so that it is perpendicular to line <i>b</i> .
	Write a ratio for sinA, and then for sinC. Then, solve each for h.
	Since each ratio is equal to <i>h</i> , they must also equal one another.
	By using similar steps, you can also show the same for <i>b</i> and sin <i>B</i> .
sine law	For any triangle, the sine law states that the sides of a triangle are proportional to the sines of the opposite angles: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} OR \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

	itios sine, cosine, and tangent can be used to find triangles, sine law and cosine law must be used.
	triangles is to imagine the angle and its opposite le <i>a</i> are partners, < <i>B</i> and <i>b</i> are partners, and < <i>C</i>
	know one full set of partners and half of another f the three partners, <u>at least</u> two of which are
Example 1 – For each oblique triangle,	state which law you would use.
a) <i>x</i> =30cm, <i>y</i> =28cm, <i>z</i> =32cm	b) < <i>C</i> =27°, <i>a</i> =17m, <i>c</i> =13m
c) < <i>J</i> =41°, <i>k</i> =16cm, <i>p</i> =14cm	d) <c <b="46°," =27°,="" a="120m</td"></c>
e) <a <b="50°," <c="95°</td" =35°,=""><td>If you have ONLY angles, then</td>	If you have ONLY angles, then
The cosine law describes the relations lengths of the three sides of any trian	ship between the cosine of an angle and the gle.
$c^2 = a^2$	$+b^2-2ab\cos C$
Cosine law can also be written as a^2	$b^2 = b^2 + c^2 - 2bc\cos A$ OR
,	$a^{2} = a^{2} + c^{2} - 2ac\cos B$

(deriving cosine law:

cosine law

see p.299 of your workbook) Example 2 – Solve the triangle. Round answers to one decimal place.

using cosine law & sine law

b = 29cm, *c* = 28cm, and <A = 52°

Example 3 – Solve the triangle. Round answers to one decimal place.

a = 14m, *b* = 18m, *c* = 22m

It is also helpful to know what the cosine law looks like rearranged for an angle:

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$