\qquad

Chapter 8 Notes

Trigonometry

Date	Topic/Lesson	Assignment
	8.0 - Trig Review	After Notes ex 1-8.0 Trig. Review Worksheet \#1-2 After Notes ex 3-8.0 W/S \#3-5 After Notes ex 4-8.0 W/S \#6
	8.1 - Angles and their Measure	After Notes ex 2-p.291: 1, 2, 3a-h, 5left After Notes ex 5 - p.293: 7, 9a-h, 10, 11
	8.2 - The Three Trig Functions	After Notes ex 2-p.300: 1, 2left, 3a-f After Notes ex 4-p.303: 5a-d, 6a-d
	8.3 A - Special Angles Part 1	Warm-up before Notes - p.312: 1(a-f), 2(a-f), After Quadrantal angles - p.313: 3(a-f) After Notes - p.313: 3(g-p)
	8.3 B - Special Angles Part 2	After Notes ex 2-p.313: 4 After Notes ex 3-p.314: 5a-h
8.5 - The Sine Law	After Notes - p.330: 6abcfhi	
	8.6 - The Cosine Law	After Notes ex 1-p.336: 2 After Notes ex 3 - p.338: 7acde, 8abe
	Test Prep	Chapter 8 Practice Test
	Review	p.341: 1left, 2a-d, 3, 4left, 6abc, 7bdfhj, 9a-e
	Chapter Test	Chapter 8 Test

8.0 - Trigonometry Review

In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C. Sides are usually labeled with lower case letters. The side opposite to $<A$ will be labeled a and so on.

Whenever we do trigonometry problems on a right triangle, we focus on a target angle. The target angle can be any of the two angles that are not the right angle.

Once we have a target angle, we can name each side of the triangle. Let's suppose A is the target angle. Then side a is called the \qquad side because it is on the other side of the triangle. Side c is always called the \qquad because it is the longest side, and side b is called the \qquad side as it is beside $<A$. If the target angle does not have an angle measurement on it, we represent it with the Greek letter theta, θ.

Suppose B is the target angle in the triangle on the right. Label all appropriate parts.

The three trigonometric ratios for right triangles are:

$\sin \theta=$	SINE			COS			NG	
	sit	$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$				$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$		
	hypotenuse							
S	0	H	C	A	H	T	0	A

What is the point of the trigonometric ratios?

Example 1 - Solve each to the nearest hundredth.
a) $\cos 42^{\circ}$
b) $\tan 67^{\circ}=\frac{x}{7}$
c) $\sin \theta=\frac{5}{9}$
d) $\cos 35^{\circ}=\frac{8}{x}$

In order to solve a right triangle, you must find the measurement of all three sides and all three angles.
Example 2 - Solve $\triangle A B C$ to the nearest tenth.
7

A

Example 3 - Sketch \& solve $\triangle A B C$ to the nearest tenth where $<C=90^{\circ}, c=95 \mathrm{~cm} \& b=44 \mathrm{~cm}$
angles in standard position

An angle that is drawn in standard position must have its vertex at the origin of the Cartesian plane, and its initial arm must coincide with the positive x-axis.

To draw angles in standard position, we use an initial arm (always the positive x-axis) and a terminal arm (the final position after a rotation). The angle is labeled $\boldsymbol{\theta}$ (theta). The vertex of the angle must be at the origin $(0,0)$ of a Cartesian plane. Positive angles are measured in a counterclockwise direction. Here is an example:

Example 4 - Draw each angle in standard position and identify the quadrant in which it $\begin{array}{lll}\text { lies: a) } 60^{\circ} & \text { b) } 100^{\circ} & \text { c) } 300^{\circ}\end{array}$

8.1 - Angles and Their Measure

angles in standard position
coterminal angles

An angle that is drawn in standard position must have its vertex at the origin of the Cartesian plane, and its initial arm must coincide with the positive x-axis.

Example 1- Draw each angle in standard position and identify the quadrant in which it $\begin{array}{llll}\text { lies: a) } 225^{\circ} & \text { b) }-120^{\circ} & \text { c) }-290^{\circ}\end{array}$

Angles in standard position that have the same terminal side are coterminal.

Example 2 - Find three coterminal angles (at least one negative) for:
a) 60°
b) 225°

What is a general formula to find coterminal angles?
reference angles

For each angle in standard position, there is a corresponding acute angle called the reference angle, which is the acute angle between the terminal arm and the (nearest) x axis. Thus, any reference angle is between 0° and 90°
Quadrant 1
Quadrant 2
Quadrant 3
Quadrant 4

Example 3 - Draw each angle in standard position, and find the reference angle.
a) 30°
b) 250°
c) 325°
d) 100°

Example 4 - Find the reference angle for:
a) 1450°
b) -870°

Example 5 - Find all angles, $0^{\circ} \leq \theta \leq 360^{\circ}$, that have reference angles of 30°. Do a sketch.

Find $\sin \theta$ for each with your calculator:

Find $\cos \theta$ for each with your calculator:

What do you notice? Why are some results positive and some negative?

8.2 - The Three Trigonometric Functions

Suppose θ is an angle in standard position. Suppose the point at the end of the terminal arm is labeled $P(x, y)$, at a distance r from the origin.

Trigonometry ratios in the four quadrants:

Quadrant $290^{\circ}<\theta<180^{\circ} \quad$ Quadrant $10^{\circ}<\theta<90^{\circ}$

Quadrant $3180^{\circ}<\theta<270^{\circ}$

Quadrant $4270^{\circ}<\theta<360^{\circ}$

Here is a way to remember the sign of the trigonometric ratios in each quadrant:

Example 1 - Identify the quadrant(s) for the angles satisfying the following conditions:
a) $\sin \theta<0, \cos \theta>0$
b) $\tan \theta<0, \cos \theta<0$

Example 2 - The point $P(-5,-12)$ lies on the terminal arm of an angle, θ, in standard position. Determine the exact trigonometric ratios for $\sin \theta, \cos \theta$, and $\tan \theta$.

Example 3 - Suppose θ is an angle in standard position with terminal arm in quadrant III, and $\tan \theta=\frac{1}{5}$. Determine the exact values of $\sin \theta$ and $\cos \theta$.

Example 4 - Find $\sin \alpha$ if $\cos \alpha=0.251$ with α in Quadrant IV.

8.3A - Special Angles Part 1

Suppose θ is an angle in standard position. Suppose the point at the end of the terminal arm is labeled $P(x, y)$, at a distance r from the origin.

You can use a reference angle to determine the three trigonometric ratios in terms of x, y, and r.
$\sin \theta=\square \cos \theta=\square \tan \theta=\square$

A quadrantal angle is an angle in standard position whose terminal arm lies on one of the axes. It's easiest to suppose the terminal arm, \boldsymbol{r}, has a length of 1 .

Example - Find the values of $\sin \theta, \cos \theta$, and $\tan \theta$ for each quadrantal angle on the Cartesian plane.

	0°	90°	180°	270°
$\sin \theta$				
$\cos \theta$				
$\tan \theta$				

There are two right triangles in trigonometry that are especially significant because of their frequent occurrence.

A $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with legs of each 1 unit has a hypotenuse of $\sqrt{2}$.

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

S
0
H
C
A
H
T
0
A

$$
\sin 45^{\circ}=
$$

\qquad $\cos 45^{\circ}=$ \qquad $\tan 45^{\circ}=$ \qquad

A $\mathbf{3 0} 0^{\circ}-60^{\circ}-90^{\circ}$ triangle has legs of 1 unit and $\sqrt{3}$ units, with hypotenuse 2 units.

The trigonometric ratios are given as exact values (in fraction/radical form as opposed to an approximated decimal).

What is the CAST rule again?

Example 2 - Evaluate $\sin 30^{\circ}$, $\sin 150^{\circ}$, $\sin 210^{\circ}$, and $\sin 330^{\circ}$.

8.3B - Special Angles Part 2

Warmup 1 - Draw the $45^{\circ}-45^{\circ}-90^{\circ}$
triangle and the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle below:

Warmup 2 - Quickly draw and explain the 'CAST' rule:

Example 1 - Find the exact value of $\cos 240^{\circ}$

solving for angles

Steps for solving for angles given their sine, cosine, or tangent ratio:

1. Use the sign (+ or -) to determine the quadrant the solution is in.
2. Solve for the reference angle.
3. Draw a diagram and use the reference angle to find the angle in standard position.

Example 2 - Solve for θ.
$\begin{array}{lll}\text { a) } \sin \theta=-\frac{1}{\sqrt{2}}, 0^{\circ} \leq \theta<360^{\circ} & \text { b) } \cos \theta=\frac{1}{2}, 0^{\circ} \leq \theta<360^{\circ} & \text { c) } \sin \theta=-\frac{\sqrt{3}}{2}, 0^{\circ} \leq \theta \leq 360^{\circ}\end{array}$

Example 3 - Determine the measure of θ, to the nearest degree, given
a) $\sin \theta=-0.8090$, where $0^{\circ} \leq \theta<360^{\circ}$
b) $\tan \theta=-0.7565$, where $0^{\circ} \leq \theta<360^{\circ}$

8.5 - The Sine Law

developing the sine law

So far, you have learned how to use trigonometry when working with right triangles. Now, you will learn how to use trigonometry for oblique triangles (non-right triangles).

Draw an oblique triangle $A B C$ and label the sides $a, b, \& c$ (opposite the respective corresponding angles). Then, draw a line (call it h) from B to b, so that it is perpendicular to line b.

Write a ratio for $\sin A$, and then for $\sin C$. Then, solve each for h.

Since each ratio is equal to h, they must also equal one another.

By using similar steps, you can also show the same for b and $\sin B$.

For any triangle, the sine law states that the sides of a triangle are proportional to the sines of the opposite angles:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad \text { OR } \quad \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

solving a triangle

When solving a triangle, you must find all of the unknown angles and sides. Example 1 - Solve the triangle (answer to the nearest tenth).

Example 2 - Sketch and solve the triangle (round to the nearest whole number).

$$
<B=38^{\circ}, b=8, a=6
$$

information necessary to use the sine law

For oblique triangles, what is the minimum information needed in order to use the sine law to find new information?

For right triangles, the trigonometric ratios sine, cosine, and tangent can be used to find unknown sides and angles. For oblique triangles, sine law and cosine law must be used.

An effective way to work with oblique triangles is to imagine the angle and its opposite side as 'partners'. Thus, angle A and side a are partners, $<B$ and b are partners, and $<C$ and c are partners.

In order to use the sine law, you must know one full set of partners and half of another set. If you know only half of each set of the three partners, at least two of which are sides, you must use cosine law.

Example 1 - For each oblique triangle, state which law you would use.
a) $x=30 \mathrm{~cm}, y=28 \mathrm{~cm}, z=32 \mathrm{~cm}$
b) $<C=27^{\circ}, a=17 \mathrm{~m}, c=13 \mathrm{~m}$
c) $<J=41^{\circ}, k=16 \mathrm{~cm}, p=14 \mathrm{~cm}$
d) $<C=27^{\circ}, \angle B=46^{\circ}, a=120 \mathrm{~m}$
cosine law
(deriving cosine law:
e) $\angle A=35^{\circ}, \angle B=50^{\circ}, \angle C=95^{\circ} \quad$ If you have ONLY angles, then
see p. 299
of your
workbook)

The cosine law describes the relationship between the cosine of an angle and the lengths of the three sides of any triangle.

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

Cosine law can also be written as $a^{2}=b^{2}+c^{2}-2 b c \cos A \quad O R$

$$
b^{2}=a^{2}+c^{2}-2 a c \cos B
$$

using cosine law \& sine law Example 2 - Solve the triangle. Round answers to one decimal place.

$$
b=29 \mathrm{~cm}, c=28 \mathrm{~cm}, \text { and } \angle A=52^{\circ}
$$

Example 3 - Solve the triangle. Round answers to one decimal place.

$$
a=14 \mathrm{~m}, b=18 \mathrm{~m}, c=22 \mathrm{~m}
$$

It is also helpful to know what the cosine law looks like rearranged for an angle:

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

