Exponents Chapter Notes

Assignment List

Date	Lesson	Assignment
	1. Exponent Laws	Exponent Rules Practice Handout and Mickelson Page 203 #1
	2. Solving Exponential Equations	Solving Exponential Equations Handout and Mickelson Page 203 #2 (Ans. 2b) $x = -2,1$)
	3. Graphing Exponential Functions	Mickelson Page 204 #4-7
	4. Applications of Exponential Functions	Mickelson Page 206 #9
		Practice Test
		Review
		Exponents Test

PC12

Exponents Day 1: Exponent Laws

Review of Exponent Laws

Law:
Product
$$x^{m} = 1$$

For $x^{n} = 1$
For $x^{n} =$

Simplifying Exponential Expressions using Exponent Laws

Example 1: Simplify

Example 4: Simplify

Assignment:

Exponent Rules Practice Handout and Mickelson Page 203 #1

Exponents Day 2: Solving Exponential Equations

Solving Exponential Equations

To solve an exponential equation, use the same principles of simplifying expressions to get a (<u>Ommon</u> <u>base</u> on either side of the equation. If the bases on either side are equal, then the exponents must also be equivalent. This allows us to use $x^m = x^n \iff m = n$, when $x \neq -1$, 0, 1 Need "single power" on each side, with some base. Example 1: Solve (a) get same base (b) get same base (c) get same base (c) $(2^2)^{3-x} = (2^3)^{x+1}$ (c) simplify each side (c) $(2^2)^{3-x} = (2^3)^{x+1}$ (c) simplify each side (c) $(2^2)^{3-x} = (2^3)^{x+1}$ (c) $(2^3)^{3-x} = (2^3)^{x+1}$ (c) $(2^$ (ommon base: 2 $\begin{array}{c} 4 \\ 6 \\ 6 \\ 4 \\ 2^2 \\ 8 \\ 8 \\ 2^3 \end{array}$ Steps: $\frac{(3^{2x})^3(9^{x-1})^2}{(27^{x-3})^4} = 81^5$ Example 2: Solve $\begin{array}{c} (3) & q = 3^2 & 27 = 3^3 & 91 = 3^3 \\ (3) & (3)$ $(27x-3)^{4} = (3^{4})^{5}$ $(3)^{6x} (3^{2})^{2x-2} = (3^{4})^{5}$ $(3)^{6x} (3^{2})^{2x-2} = (3^{4})^{5}$ $(3)^{6x} (3^{2})^{2x-3} = 3^{20}$ $(3)^{12x-3} = 3^{20}$ $(3)^{12x-3} = 3^{20}$ $(3)^{12x-3} = 3^{20}$ $3^{-2x+32} = 3^{20}$ $3 \quad \therefore \quad -2x + 32 = 20 \\ -32 \quad -32 \quad -32$ 4 $\frac{-2 \times = \frac{-12}{-2}}{-2} = \frac{-12}{-2}$

Example 3: Solve

$$9^{\sqrt{x-2}} = 3^{x-2}$$
(or non before: 3
(3)^{1/(x-2)} = 3^{x-2}
(3)^{1/(x-2)} = 3^{x-2}
(3)^{1/(x-2)} = 3^{x-2}
(3) $2^{\sqrt{x-2}} = 3^{x-2}$
(3) $2^{\sqrt{x-2}} = 3^{x-2}$
(4) $\sqrt{x-2} = 3^{x-2}$
(5) $2^{\sqrt{x-2}} = 3^{x-2}$
(6) $3^{\sqrt{x-2}} = 3^{x-2}$
(7) $\sqrt{x-2} = 3^{x-2}$
(9) $\sqrt{x-2} = 3^{x-2}$
(9)

Assignment: Solving Exponential Equations Handout and

Mickelson Page 203 #2abcef (Ans. 2b) x = -2,1) Extension : 2d

Exponents Day 3: Graphing Exponential Functions

Exponential Functions

An exponential function is any function that has a variable in the exponent and a positive base not equal to zero.

 $\mathbf{v} = \mathbf{b}^{\mathbf{x}}$ where b > 0, $b \neq 1$

base 0 < b < 1

Exploration:

- a) Use a table of values to graph $y_1 = 2^x$
- b) Use graphing technology to graph the other functions (on the same grid) and determine the basic properties of any exponential function

base b > 1

 $y_{1} = 2^{x}, \quad y_{2} = 3^{x}, \quad y_{3} = 10^{x}$ $x \quad y = 5^{x}$ $-3 \quad \frac{1}{8} = 2^{(-7)} = \frac{1}{2^{x}} = \frac{1}{8}$ $-2 \quad \frac{1}{4} = 2^{(-7)} = \frac{1}{2^{2}} = \frac{1}{4}$ $-1 \quad \frac{1}{2} = 2^{-1} = \frac{1}{2}$ $0 \quad \frac{1}{2} = 2^{0}$ $1 \quad 2 \quad \frac{1}{2} = 2^{1}$ $2 \quad \frac{1}{2} = 2^{2}$ $4 \quad \frac{1}{2} = 2^{3}$ $4 \quad \frac{1}{2} = 2^{3}$ $4 \quad \frac{1}{2} = 2^{3}$ $y_4 = \left(\frac{1}{2}\right)^x = 2^{-x}$ y=3× 1y=2× y=(;)× ↑ ¥10 ¥ HA y=0 x**Common features:** All pass through the point: $(\bigcirc, 1)$ Horizontal Asymptote: $\Psi = O$ Domain: $\{x \in \mathbb{R}\}$ Range: {yer | y > 0 Key Points: $(-1, \frac{1}{b})$ (0, 1)(1, 6) HA y= 0

$$=b^{x}$$
 \longrightarrow $y=a\cdot b^{x-h}+k$

Transformations of Exponential Functions

Example 1: Without technology, graph the following. State the domain, range, intercept(s) and

Example 2: Without technology, graph the following. State the domain, range, intercept(s) and asymptotes a = -1

Assignment: Mickelson Page 204 #4-7

Vertical means +

Exponents Day 4: Applications of Exponential Functions

Applications of Exponential Functions

There are a variety of situations where exponential functions can be applied to solve real life problems. Though these may seem like unique situations, they are all just variations of the basic exponential $y = a(b)^x$

End = Start (rate) time ") ا

Compound Interest: Interest calculated on <u>principal</u> invested and then added to the original investment

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$
where $A = final Amount$

$$P = Principal$$

$$r = rate as a decimal (per year)$$

$$n = number of companding periods (per year)$$

$$t = time(in years)$$

Example 1: Find the interest earned if \$2500 is invested at 8.5%/a compounded semi-annually for 4 years

A=?A=
$$P(1+\frac{r}{n})^n$$
(2)(4)#Rumember unitsP=2500= $2500(1+\frac{0.085}{2})^n$ #Round money to
a decinal placesr=0.085= $3500(1.0425)^8$ # Re-read question.t=4= 3487.77546 I= A-Pt=4The final Amount will be \$3487.78.I= A-PThe final Amount will be \$3487.78.= $3487.78.7876$

Earthquakes/pH

The Richter scale and the pH scale are power of 10 scales, meaning in $\mathbf{v} = \mathbf{b}^{\mathbf{x}}$, the base is 10.

Example 2: How many times more powerful is an earthquake measuring $\frac{\overleftarrow{6}}{8.4}$ on the Richter scale compared to an earthquake measuring 4.2?

Growth and Decay

F=?

Discrete Growth/Decay –growth/decay occurs at a specified rate over a specific time period.

<u>Continuous Growth/Decay</u> – growth/decay occurs at a continuously over time:

E.g. bacteria and plant growth, human population growth, radiation absorption and decay

$F = Ie^{rt}$	F = Final amount I = initial amount
	r = continuous rate of growth/decay per unit time* t = total time

*Note: for continuous growth/decay rate: do not add to or subtract from 1. Increase is a positive r, and decrease is a negative r.

A note about
$$e$$
 is an important constant (like \mathbb{T} !)
that is useful in exponential functions.
 e^{\times} you will find it on your calculator, usually
as the base with a mystery exponent.
Tryit! $e^{+} \propto e^{+} l = ? \qquad e = 2.71828$
Example 4: A bacterial population of 3000 grows at a rate of 2.3% per minute. How many
bacteria exist after 4 hours?
 $f^{+} = ?$
 $I = 3000 (e^{(0.023)(240)})$
 $F = ? = 3000 (e^{(0.023)(240)})$
 $F = 3000 (e^{5.52})$
 $I = 3000 (e^{5.52})$
 $I = 748 905.1116$
 $t = 240$
 $f^{+} e^{+} hours, there will$
 $b = 748 905 bacteria.$

Assignment: p. 206 #9

F

I

r

f