\qquad

Exponents

Chapter Notes

Assignment List

Date	Lesson	Assignment
	1. Exponent Laws	Exponent Rules Practice Handout and Mickelson Page 203 \#1
	2. Solving Exponential Equations	Solving Exponential Equations Handout and Mickelson Page 203 \#2 (Ans. 2b) $x=-2,1$)
	4. Graphing Exponential Functions Applications of Exponential Functions	Mickelson Page 204 \#4-7
		Mickelson Page 206 \#9
		Practice Test
		Review

Exponents Day 1: Exponent Laws
Review of Exponent Laws
$\begin{aligned} & \text { Instead, } \\ & \text { write bracket } \\ & \text { twice }\end{aligned}(x+3)^{2}=(x+3)(x+3)$

$$
=x^{2}+6 x+9
$$

Law:
"Anything to the power of 0

$$
x^{0}=1
$$

Product Rule

$$
x^{m} \cdot x^{n}=\chi^{m+n}
$$

$$
x^{3} \cdot x^{2}=x^{3+2}=x^{5}
$$

Quotient
Rule
x^{m} subtract exp.
$\begin{aligned} & \text { "Power of } \\ & \text { a power" }\end{aligned} \quad\left(x^{m}\right)^{n}=\chi^{m n}$

$$
\frac{y^{6}}{y^{2}}=y^{6-2}=y^{4}
$$

$$
\left(b^{5}\right)^{2}=b^{(5)(2)}=b^{10}
$$

$$
(-3 x)^{4}=(-3)^{4}(x)^{4}=81 x^{4}
$$

$$
\left(\frac{x}{6}\right)^{2}=\frac{x^{2}}{6^{2}}=\frac{x^{2}}{36}
$$

$$
\begin{aligned}
& 5^{-1}=\frac{1}{5^{1}}=\frac{1}{5} \quad(-3)^{-2}=\frac{1}{(-3)^{2}}=\frac{1}{9} \\
& \left(\frac{1}{2}\right)^{-1}=\left(\frac{2}{1}\right)^{1}=2 \quad\left(\frac{5}{7}\right)^{-2}=\left(\frac{7}{5}\right)^{2}=\frac{7^{2}}{5^{2}}=\frac{49}{25}
\end{aligned}
$$

$$
\begin{aligned}
& (x)^{\frac{1}{2}}=\sqrt[2]{x}=\sqrt{x} \quad(-27)^{\frac{1}{3}}=\sqrt[3]{-27}=-3 \\
& (x)^{\frac{3}{4}}=\sqrt[4]{x^{3}} \text { or } \sqrt[4]{x^{3}} \quad(9)^{\frac{3}{2}}=(\sqrt[2]{9})^{3}=(3)^{3}=27
\end{aligned}
$$

Common: $(x+3)^{2} \neq x^{2}+a$
Examples):

$$
5^{0}=1 \quad(-124)^{0}=1 \quad-6^{0}=-1
$$

Warring!
Note: $(x \pm y)$

Simplifying Exponential Expressions using Exponent Laws

Example 1: Simplify

$$
\begin{aligned}
& \frac{\left(-4 a^{-5} b^{3}\right)^{-2}}{a^{-1} b^{2}} \\
= & \frac{(-4)^{-2}\left(a^{-5}\right)^{-2}\left(b^{3}\right)^{-2}}{a^{-1} b^{2}} \\
= & \frac{(-4)^{-2} a^{10} b^{-6}}{a^{-1} b^{2}} \\
= & (-4)^{-2} a^{11} b^{-8} \\
= & \frac{a^{11}}{(-4)^{2} b^{8}} \\
= & \frac{a^{11}}{16 b^{8}}
\end{aligned}
$$

Simplifying Exponential Expressions by first Finding a Common Base
... no exponent laws... Yet!

Example 2: Simplify

Example 3: Simplify

$$
\begin{aligned}
& \begin{aligned}
& 4^{2 x} \cdot 8^{3-x} \\
= & \left(2^{2}\right)^{\text {mutip }} \cdot\left(2^{2}\right)^{(3-x)}
\end{aligned} \\
& =2^{4 x} \cdot 2^{9-3 x} \\
& =2 \\
& =2^{x+9} \\
& \left.\frac{\left(9^{x-3}\right)^{3}}{27^{x-5}}\right) \\
& =\frac{\left(3^{2)^{2(x-9)}}(3)^{2 x}\right.}{\left(3^{3}\right)^{-x-5)}} \\
& =\frac{3^{6 x-18} 3^{2 x} \text { add }}{3^{3 x-15}} \\
& =\frac{3^{6 x-18+2 x}}{3^{3 x-15}} \\
& =\frac{3^{8 x-18}}{3^{3 x-15}} \text { Subtract } \\
& =3^{(8 x-18)-(3 x-15)} \\
& =3^{8 x-18-3 x+15} \\
& =3^{5 x-3} \\
& \text { These are all base 3: }
\end{aligned}
$$

Example 4: Simplify

$$
\begin{aligned}
& \frac{27^{2 x+1} \cdot 9^{1-3 x}}{\left(\frac{1}{3}\right)^{3 x-2}} \\
& =\frac{\left(3^{3}\right)^{(2 x+1)} \cdot\left(3^{2}\right)^{(1-3 x)}}{\left(3^{-1}\right)^{(3 x-2)}} \\
& =\frac{3^{6 x+3} \cdot 3^{2-6 x}}{3^{-3 x+2}} \\
& =\frac{3^{6 x+3+2-6 x}}{3^{-3 x+2}} \\
& =\frac{3^{5}}{3^{-3 x+2}}>^{\text {subtract }} \\
& =3^{5-(-3 x+2)} \\
& =3^{3 x+3} \\
& \begin{aligned}
\frac{3 x^{5} \cdot 2^{4 x}+6 x^{4} \cdot 2^{4 x}}{x^{2}+2 x} \quad \begin{array}{l}
\text { Warning! No rules for add/subtract... } \\
\text { What else can we try? }
\end{array} \\
\text { notice: } x^{2}+2 x \\
\text { we can factor! } x(x+2)
\end{aligned} \\
& =\frac{3 x^{5} \cdot 2^{4 x}+6 x^{4} \cdot 2^{4 x}}{x^{2}+2 x} \\
& \begin{array}{l}
\text { Try looking for other } \\
\text { common factors! }
\end{array} \\
& g c f: 3 x^{4} \\
& =\frac{2^{4 x}\left(3 x^{5}+6 x^{4}\right)}{x^{2}+2 x} \text { cf: } x \\
& =\frac{2^{4 x} \cdot 3 x^{4}(x+2)}{x(x+2)} \\
& =\frac{2^{4 x} \cdot 3 x^{43}(x+2)}{x}(x+2) \\
& \text { Reduce! } \\
& \frac{x^{4}}{x}=x^{3} \\
& =2^{4 x} \cdot 3 x^{3}
\end{aligned}
$$

Example 5: Simplify

Assignment:
Exponent Rules Practice Handout and Mickelson Page 203 \#1

Exponents Day 2: Solving Exponential Equations

Solving Exponential Equations

To solve an exponential equation, use the same principles of simplifying expressions to get a Common base on either side of the equation. If the bases on either side are equal , then the exponents must also be equivalent.
This allows us to use $x^{m}=x^{n} \Leftrightarrow m=n$, when $x \neq-1,0,1$ Need "single power"
on each side, with same base

Example 1: Solve
Steps:
(1) get same base

$$
4^{3-x}=8^{x+1}
$$

(1) $\left(2^{2}\right)^{3-x}=\left(2^{3}\right)^{x+1}$
(2) Simplify each side so you have
(2) $2^{6-2 x}=2^{3 x+3}$
single power = single power
(3) "compare exponents"
(3) $\therefore \quad 6-2 x=3 x+3$
(4) solve
(4) $\frac{3}{5}=\frac{5 x}{5}$

$$
3 / 5=x
$$

Example 2: Solve

$$
\frac{\left(3^{2 x}\right)^{3}\left(9^{x-1}\right)^{2}}{\left(27^{x-3}\right)^{4}}=81^{5}
$$

(2)

common base: 2

Example 3: Solve
(1) $\quad\left(3^{2}\right)^{\sqrt{x-2}}=3^{x-2}$
(2) $\quad 3^{2 \sqrt{x-2}}=3^{x-2}$

(3)
(4) both sides

$$
2 \sqrt{x-2}=x-2
$$

$$
\begin{aligned}
2^{2} \cdot \sqrt{(x-2)}^{2} & =(x-2)(x-2) \\
4(x-2)= & x^{2}-2 x-2 x+4 \\
4 x-8 & =x^{2}-4 x+4 \\
-4 x+8 & -4 x+8 \\
0 & =x^{2}-8 x+12 \\
0 & =(x-6)(x-2) \\
\therefore x & =6 \text { or } x=2 \\
& \text { check! }
\end{aligned}
$$

Extension Example: Solve $\quad 5^{-|x+3|}=\frac{1}{25} \quad$ common base: $5 \quad \frac{1}{25}=\frac{1}{5^{2}}=S^{-2}$

$$
\begin{equation*}
5^{-|x+3|}=5^{-2} \tag{1}
\end{equation*}
$$

(3) $\quad \therefore-|x+3|=-2$ (divide bothsides by -1)

Tosolve absolute
value equations, consider both

+ and
(4) $\quad \therefore \quad|x+3|=2$

$$
x+3=+2
$$

cases

$x=-1 \quad$ or $\quad x=-5$

Assignment: Solving Exponential Equations Handout and
Mickelson Page 203 \#2abcef (Ans. 2b) $x=-2,1$) Extension : 2d

Exponents Day 3: Graphing Exponential Functions

Exponential Functions

An exponential function is any function that has a variable in the exponent and a positive base not equal to zero.

$$
\boldsymbol{y}=\boldsymbol{b}^{\boldsymbol{x}} \quad \text { where } b>0, b \neq 1
$$

Exploration:

a) Use a table of values to graph $y_{1}=2^{x}$
b) Use graphing technology to graph the other functions (on the same grid) and determine the basic properties of any exponential function
base $b>1$
$y_{1}=2^{x}, \quad y_{2}=3^{x}, \quad y_{3}=10^{x}$

x	$y=2^{(x)}$
-3	$1 / 8$
-2	$1 / 4$
-1	$=2^{(-3)}=\frac{1}{2^{3}}=\frac{1}{8}$
0	$=2^{(-2)}=\frac{1}{2^{2}}=\frac{1}{4}$
1	$2=2^{-1}=\frac{1}{2}$
2	4
3	$=2^{1}$
	$=2^{3}$
3	

Common features:

All pass through the point: $(0,1)$
Horizontal Asymptote: $y=0$
Domain: $\{x \in \mathbb{R}\}$
Range: $\{y \in \mathbb{R} \mid y>0$
Key Points:

$$
\begin{aligned}
& \text { asymptotes. } h=-3 \\
& y=2^{x+3}-3 \\
& k=-3
\end{aligned}
$$

base is 2
kep.
$(-1,1 / b) \Rightarrow(-1,1 / 2) \rightarrow(-4,-2.5)$

$$
\begin{aligned}
& \text { k.p. } \\
& \text { k. }
\end{aligned} \begin{aligned}
& -3 \\
& (-1,1 / b) \Rightarrow(-1,1 / 2) \rightarrow \\
& (-4,-2 \cdot 5) \\
& (0,1) \Rightarrow(0,1) \rightarrow(-3,-2) \\
& (1, b) \Rightarrow(1,2) \rightarrow(-2,-1) \\
& \text { HA } y=0 \quad y=0 \rightarrow y=-3
\end{aligned}
$$

Transformations of Exponential Functions

Example 1: Without technology, graph the following. State the domain, range, intercepts) and asymptotes.
$y=2^{x+3}-3$
$y=2^{(0+3)}-3$
$y=2^{3}-3=8-3=5$
plot $(0,5)$
x-int can approximate
until we learn logs.
$\simeq(-1.2,0)$
HA $y=-3$
$y=b^{x} \rightarrow y=a \cdot b+k$

$$
\begin{aligned}
& \text { graph the following. State the domain, range, intercepts) and } \\
& \begin{array}{l}
y-\operatorname{int}(\operatorname{set} x=0) \\
x+3
\end{array} \quad \frac{\text { Domain: }\{x \in \mathbb{R}\}}{\square} \quad\left\{\begin{array}{l}
\text { Range: }\{y \in \mathbb{R} \mid y>-3\} \\
\end{array}\right]
\end{aligned}
$$

Example 2: Without technology, graph the following. State the domain, range, intercepts) and asymptotes. $a=-1$

$$
\begin{aligned}
& \text { asymptotes. } a=-1 \text { no } h^{\prime \prime} \\
& y=-\left(\frac{1}{2}\right)^{x}-1
\end{aligned}
$$

base is $\frac{1}{2}$

$$
\begin{aligned}
& \text { note: }\left\{\frac{1}{b}=\frac{1}{1 / 2}=1 \times \frac{2}{1}=2\right. \\
& \text { kep: } \\
& (-1,1 / b) \Rightarrow(-1,2) \rightarrow(-1,-2) \rightarrow(-1,-3) \\
& (0,1) \Rightarrow(0,1) \rightarrow(0,-1) \rightarrow(0,-2) \\
& (1, b) \Rightarrow\left(1, \frac{1}{2}\right) \rightarrow(1,-1 / 2) \rightarrow(1,-1.5) \\
& \text { LA } y=0 \quad y=0 \rightarrow y=0 \rightarrow y=-1
\end{aligned}
$$

basic Shape for
$\left(\frac{1}{2}\right)^{x}$ is $\xrightarrow{\square}$.
Vertical means
$\begin{aligned} & \text { Reflection } \\ & (a=-1)\end{aligned}$
($a=-1$) Assignment: Mickelson Page 204 \#4-7

Exponents Day 4: Applications of Exponential Functions

Applications of Exponential Functions
There are a variety of situations where exponential functions can be applied to solve real life problems. Though these may seem like unique situations, they are all just variations of the basic exponential $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{b})^{\boldsymbol{x}}$

$$
\text { "End }=\text { Start (rate) time " }
$$

Compound Interest: Interest calculated on principal invested and then added to the original investment

Goriginal amount
where $A=$ final Amount

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$\mathrm{P}=$ Principal
$\mathrm{r}=$ rate as a decimal (per year)
$\mathrm{n}=$ number of compounding periods (per year)
$\mathrm{t}=\operatorname{time}(\mathrm{in}$ years)

Example 1: Find the interest earned if $\$ 2500$ is invested at $8.5 \% /$ compounded semi-annually for 4 years

$$
\begin{aligned}
& A=? \\
& P=2500 \\
& r=0.085 \\
& n=2 \\
& t=4
\end{aligned}
$$

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =2500\left(1+\frac{0.085}{2}\right)^{(2)(} \\
& =2500(1.0425)^{8} \\
& =3487.77546
\end{aligned}
$$

The final Amount will be \$3487.78.
*Remember units * Round money to 2 decimal places * Re-read question.

$$
\begin{aligned}
I & =A-P \\
& =3487.78-2500 \\
& =98778
\end{aligned}
$$

The interest earned will be $\$ 987.78$.

Earthquakes/pH
The Richter scale and the pH scale are power of 10 scales, meaning in $\boldsymbol{y}=\boldsymbol{b}^{\boldsymbol{x}}$, the base is 10 .

Example 2: How many times more powerful is an earthquake measuring 8.4 on the Richter scale compared to an earthquake measuring 4.2?
" 8.4 " means $10^{8.4} \quad E_{2}$
so $\frac{E_{1}}{E_{2}}=\frac{10^{8.4}}{10^{4.2}}=10^{8.4-4.2}=10^{4.2}=15848.9$
It is 15849 times more powerful.
Growth and Decay
Discrete Growth/Decay - growth/decay occurs at a specified rate over a specific time period.

7.5 growth rate $\rightarrow \mathrm{r}=7.5$
15% depreciation $\rightarrow \mathrm{r}=0.85 \quad(100 \%-15 \%)$ 5% increase $\rightarrow r=1.05 \quad(100 \%+5 \%)$
\qquad
population triples $\rightarrow r=3$,
radioactive half-life decay $\rightarrow \mathrm{r}=\frac{\frac{1}{2}}{2}$
$\quad 100 \%-8 \%=92 \%$
Example 3: A photocopier is set to reduce an image by 8%. What is the copy size after 4 reductions?
$F=$?
$I=100 \%$

$$
r=0.92
$$

$$
t=4
$$

$$
p=1
$$

Continuous Growth/Decay - growth/decay occurs at a continuously over time:
E.g. bacteria and plant growth, human population growth, radiation absorption and decay

$$
\begin{array}{ll}
\mathrm{F}=\mathrm{Ie} \mathrm{e}^{\mathrm{rt}} & \begin{array}{l}
\mathrm{F}=\text { Final amount } \\
\mathrm{I}=\text { initial amount } \\
\mathrm{r}=\text { continuous rate of growth/decay per unit time* } \\
\mathrm{t}=\text { total time }
\end{array}
\end{array}
$$

*Note: for continuous growth/decay rate: do not add to or subtract from 1. Increase is a positive r , and decrease is a negative r .

A note about \boldsymbol{e} as the base with a mystery exponent.

$$
\text { Trait! } e^{1} \text { or } e^{\hat{1}}=? \quad e=2.71828
$$

Example 4: A bacterial population of 3000 grows, at a rate of 2.3% per minute. How many bacteria exist after 4 hours?
continuously

$$
F=3000(Q)^{(0.023)(240)}
$$

$$
=3000\left(e^{5.52}\right)
$$

$$
=748905.1116
$$

After 4 hours, there will be 748905 bacteria

Assignment: p. 206 \#9

