\qquad Name:

Chapter 6 Test - Linear Equations

Version P
/25

Learning Outcomes	Can Start		Can Partially		Can Do	
1. Can solve linear systems using elimination and substitution						
2. Can solve linear inequalities by graphing them.						
3. Can solve a system of linear inequalities.						
4. Can solve linear inequalities applications in context.						
5. Can optimize the solution to linear inequalities by creating an objective function.						
TEST SCORE	0	1	2	3	4	5

Show all of your work.

PART 1:	Can Start		Can Partially		Can Do	
Can solve linear systems using elimination and substitution						

1. Solve the system by the elimination method.

$$
\text { check: } \begin{aligned}
-6+4(z) & =2 \\
-6+8 & =2 \\
z & =2
\end{aligned}
$$

2. Solve the system by the substitution method.

3. Solve the system using a method of your choice.

$$
\begin{gathered}
\begin{array}{l}
\begin{array}{l}
+3 / 4 y \\
x-\frac{3}{4} y=\frac{1}{4}
\end{array} \\
\left(\frac{5}{3} x-3 y=-\frac{4}{3}\right) \times 3 y+\frac{1}{4} \\
\\
5\left(\frac{3}{4} y+\frac{1}{4}\right)-9 y=-4 \\
\\
\left(\frac{15 y}{4}+\frac{5}{4}-9 y=-4\right) \times 4 \\
15 y+5-36 y=-16 \\
\end{array} \quad x=\frac{3}{4}(1)+\frac{1}{4}+\frac{1}{4} \\
\end{gathered}
$$

check

$$
\begin{aligned}
& \frac{5}{3}(1)-3(1)=-\frac{4}{3} \\
& \frac{5}{3}-3=\frac{-4}{3} \\
& \frac{5}{3}-\frac{9}{3}=\frac{-4}{3} \\
& \frac{-4}{3}=\frac{-4}{3} \\
& 1,1
\end{aligned}
$$

PART 2:	Can Start		Can Partially		Can Do	
Can solve linear inequalities by graphing them.						

1) Solve the inequality by graphing: $-x+y \leq 1$
$+x \quad+x$
$y \leq x+1$
$b=1$
$m=1$

- shade below
- solid line

2) Solve the inequality by graphing: $4 x-5 y<10$
$4 x-5 y<10$
$-4 x \quad-4 x$
$\frac{-5 y<-4 x+10}{-5}$

- dotted line
$y>\frac{4}{5} x-2 \quad$ - Shade above

PART 3:	Can Start		Can Partially		Can Do	
Can solve a system of linear inequalities.						

3) Solve the system of inequalities by graphing:

$$
\left.\begin{array}{cc}
2 \mathrm{x}-3 \mathrm{y} \leq 6
\end{array} \longrightarrow \begin{array}{c}
2 x-3 y \leq 6 \\
-2 x
\end{array}\right)
$$

4) Solve the system of inequalities by graphing:

$$
\begin{array}{rl}
-x \\
x+y & \leq 4 \\
+x & y \leq-x+4 \\
-x+y & <4 \\
& y<x+4 \\
y & \geq 0
\end{array}
$$

PART 4:	Can Start		Can Partially		Can Do	
Can solve linear inequalities applications in context.						

5) Scarlett can spend up to $\$ 120$ on souvenir T-shirts from the Olympics. She would like to buy at least 5 T-shirts to give to family and friends. The two styles of T-shirts cost \$20 or \$15 each. Create two linear inequalities, as well as two common sense restrictions, and graph the system (with shading). Then describe two possible ways for Scarlett to meet her requirements.
```
T-Shirt style \(\# 1=x=\$ 20\) each \(\quad x \& y \geq 0\)
T-Shist Style \#z \(=y=\$ 15\) each
Amount:
    \(x+y \geq 5 \longrightarrow y \geq-x+5\)
Money: \(\begin{aligned} 20 x+15 y & \leqslant 120 \\ -20 x & -20 x\end{aligned}\)
    \(\frac{15 y \leqslant-20 x+120}{15}\)
    \(y \leq \frac{-4}{3} x+8\)
```


Two ways that Scarlett can meet the requirements:
Two possible scenarios (any of the
Shaded are good)

PART 5:	Can Start		Can Partially		Can Do	
Can optimize the solution to linear inequalities by creating an objective function.						

6) A farmer raises no more than 5000 of two types of chickens. It costs $\$ 0.50$ to raise the white chickens and $\$ 0.75$ to raise the brown chickens, and the total cost cannot exceed $\$ 3000$.

At the end of six weeks, a white chicken will weigh 3 pounds, and a brown chicken will weigh 4 pounds (this info will be used to create your Objective Function).

Create and graph a system of inequalities, and use it to find how many of each type of chicken should be raised to have the maximum number of pounds of chickens.

System of Equations:

Let $B=$ brown chickens $P=$ Pounds
Let $\omega=$ white chickens

```
Objective function
P=3w+4B
```

total
chis

$$
\underset{-\omega}{\omega}+B \leq 5_{-\omega}^{000}
$$

price $.5 \omega+.75 B \leq 3000$
$\left(\frac{1}{2} \omega+\frac{3}{4} B \leq 3000\right) \times 4$
$2 \omega+3 B \leq 12000$
$-2 \omega \quad-2 \omega$
$\frac{3 B \leqslant-2 \omega+12000}{3}$
$B \leq-\frac{2}{3} w+4000$

Objective Function:

Check: $(0,0)$
$(0,4000)$
(3000,2000)
$(5000,0)$
objective function =

$$
P=3 \omega+4 B
$$

$$
P_{(0,0)}=3(0)+4(0)=0
$$

$$
P_{(0,4000)}=3(0)+4(4000)=16000 \mathrm{lbs}
$$

$$
P(3000,2000)=3(3000)+4(2000)=17,000 \mathrm{lbs} \text { tmax.m.m value }
$$

$$
P(5000,0)=3(5000)+4(0)=15,000 \mathrm{lbs}
$$

Final Answer: 3000 white \& 4000 brown chickens
will yield a maximum amount of 17,000 pounds.

