Block: _____

Chapter 6 Test – Linear Equations

Version P

/25

Learning Outcomes	Can Start		Can Partially		Can Do	
1. Can solve linear systems using elimination and substitution						
2. Can solve linear inequalities by graphing them.						
3. Can solve a system of linear inequalities.						
4. Can solve linear inequalities applications in context.						
5. Can optimize the solution to linear inequalities by creating an objective function.						
TEST SCORE	0	1	2	3	4	5

Show all of your work.

PART 1:	Can Start		Can Partially		Can Do	
Can solve linear systems using elimination and substitution						

1. Solve the system by the elimination method.

$$(x + 4y = 2) x - 2$$

$$2x + 5y = -2$$

$$x + 4(2) = 2$$

$$x + 8 = 2$$

$$-3y = -6$$

$$x = -6$$

2. Solve the system by the **substitution** method.

2) Solve the inequality by graphing: 4x-5y<10

PART 3:	Can Start		Can Partially		Can Do	
Can solve a system of linear inequalities.						

3) Solve the system of inequalities by graphing:

4) Solve the system of inequalities by graphing:

PART 4:	Can Start		Can Partially		Can Do	
Can solve linear inequalities applications in context.						

5) Scarlett can spend up to \$120 on souvenir T-shirts from the Olympics. She would like to buy at least 5 T-shirts to give to family and friends. The two styles of T-shirts cost \$20 or \$15 each. Create two linear inequalities, as well as two common sense restrictions, and graph the system **(with shading).** Then describe two possible ways for Scarlett to meet her requirements.

T-shirt sayle #1 = x = \$20 each $x \notin y \ge 0$ T-shirt style #z = y = \$15 eachthrount: $x + y \ge 5 \longrightarrow y \ge -x + 5$ Money: $20x + 15y \le 120$ -20x + 20x + 120 $15y \le -20x + 120$ $15y \le -20x + 120$ $15y \le -20x + 120$

Two ways that Scarlett can meet the requirements:

Two possible Scenarios (any of the shaded are good) (1,5) $20(1) + 15(5) \leq 120 \rightarrow 20 + 75 \leq 120$ $95 \leq 120 \sim$ (4,2) $20(4) + 15(2) \leq 120 \rightarrow 80 + 30 \leq 120$ $100 \leq 120 \sim$

PART 5:	Can Start		Can Partially		Can Do	
Can optimize the solution to linear inequalities by creating an objective function.						

6) A farmer raises no more than 5000 of two types of chickens. It costs \$0.50 to raise the white chickens and \$0.75 to raise the brown chickens, and the total cost cannot exceed \$3000.

At the end of six weeks, a white chicken will weigh 3 pounds, and a brown chicken will weigh 4 pounds *(this info will be used to create your Objective Function)*.

Create and graph a system of inequalities, and use it to find how many of each type of chicken should be raised to have the maximum number of pounds of chickens.

System of Equations: