\qquad

Logarithms

Chapter Notes

Date	Lesson	Assignment
	1. Graphing Logarithmic Functions	Mickelson Page 213 \#6, 7, 8, 9
	2. Logarithms	Mickelson Page 211 \#1-4 (left side), 5, 13
	3. Log Laws	Mickelson Page 221 \#1-3 (left side)
	4. Simplifying Logarithms	 Mickelson Page 228 \#2a-d Extension: Page 228 \#2e-i
	5. Solving Equations I	Mickelson Page 227 \#1, 4
	6. Solving Equations II	Mickelson Page 229 \#3, 5, 7
	7. Applications	Mickelson Page 236 \#1-11
		Practice Test
		Review
		Logarithms Test

Logarithms Day 1: Graphing Logarithmic Functions

Graphing the Inverse of an Exponential Function

(switch x and y)
Use the key points for the Exponential function to determine the key points and graph for its inverse:

When $b>1$

Exponential $y=2^{x} \hat{\tau}_{b}=2$

Inverse (switch \boldsymbol{x} and \boldsymbol{y})

$$
x=2^{y}
$$

$(1 / 2,-1)$
$(1,0)$
(2,1)
HA $\quad y=0$

($-1,1 / 2$)
(0,1)
(1,2)
$\vee A x=0$

Domain $x \in \mathbb{R}$
Range $y>0$

But what do we call this new function?

Logarithms

The inverse of an exponential function is another function called a logarithm.

Logarithmic form

(solve for y - call it a "log")

Note: $b>0, b \neq 1$

Formal Definition: A logarithm of a number is the exponent (y) to which a fixed value (b) must be raised in order to get that number (x)

So for the inverse graph above, $x=\underbrace{x}$ can be written as $y=\log _{2} x$

Transformations of Logarithms

A logarithm, like any other function, can be transformed using the principles associated with transforming a function. The transformation will always be in relation to the basic graph, $y=\log _{b} x$ which has the following key points and basic shape:
$y=\log _{b} x$

Key Points:
($1 / b,-1$)
(1,0)
(bel)
VA $x=0$

Example 1: Sketch the function
ff $y=-\quad \begin{aligned} & a=-1 \quad \text { (vertical reflection) } \\ & \log _{3}(x-2) \\ & \uparrow_{h}=2\end{aligned}$ (hosiz.transl. +2) basic graph:
$y=\log _{3} x$
$\begin{aligned} & \text { k.p. } \\ & (1 / 3,-1) \rightarrow x(-1)\end{aligned}+\left(\frac{1}{3}, 1\right) \rightarrow(21 / 3,1)$
$(1,0) \rightarrow(1,0) \rightarrow(3,0)$
$(3,1) \rightarrow(3,-1) \rightarrow(5,-1)$
VA $x=0 \rightarrow x=0 \rightarrow x=2$

Example 2: Sketch the function
$y=\log _{2}(2-x)+1$ * rearrange into $y=$ of $[b(x-h)]+k$
basic graph:
$y=\log _{2} x$ $y=\log _{2}[-(x-2)]+1 \leftarrow u p 1$
horiz. $\hat{\tau}_{2}$ right
reflection
1%
$k \cdot p$.

$$
x(-1) \rightarrow+2+1
$$

$$
\text { kep. }(1 / 2,-1) \rightarrow(-1 / 2,-1) \rightarrow(1.5,0)
$$

$$
(1 / 2,-1) \rightarrow(-1,0) \rightarrow(1,1)
$$

$$
(1,0) \rightarrow(-1,0) \rightarrow(-2,1) \rightarrow(0,2)
$$

$$
V A x=0 \rightarrow x=0 \rightarrow x=2
$$

Assignment: p. 213 \#6, 7, 8, 9

Logarithms Day 2: Logarithms

Recall:
The inverse of an exponential function is another function called a logarithm.
 Greek:
'logos'- word/speech/logic 'arithmos' - numbers

Note: $b>0, b \neq 1$
(x)

Formal Definition: A logarithm of a number is the exponent (y) to which a fixed value (b) must be raised in order to get that number (x)

Example 1: Change from exponential to logarithmic form
i) $\quad 3^{3^{3}}=27^{2} \quad$ uarswer" $\quad 3=\log _{3}(27)$
ii)

$$
10^{4}=10000 \quad 4=\log _{10} 10000
$$

Note: when it's base 10, we don't always write the base!

Example 2: Determine the numerical value
i) $\quad \log 1000=y$

$$
\begin{aligned}
& 10^{y}=1000 \\
& 10^{y}=10^{3} \\
& y=3
\end{aligned}
$$

iii) $\quad \log _{6} x=3$

$$
\begin{array}{r}
6^{3}=x \\
216=x
\end{array}
$$

v) $\quad \log _{17}\left(17^{381}\right)=y$

$$
17^{y}=17^{381}
$$

$$
\therefore y=381
$$

Rewrite in exponential form... then use "change of base" to solve, or just evaluate.
ii)

$$
\begin{aligned}
& f^{y}(x)=\log _{1 / 3} 27 \\
& \left(\frac{1}{3}\right)^{y}=27 \\
& \left(3^{-1}\right)^{y}=3^{3} \\
& 3^{-y}=3^{3} \quad \therefore-y=3 \therefore y=-3
\end{aligned}
$$

iv) $\quad \log _{7}(x+2)=3$

$$
\begin{aligned}
7^{3} & =(x+2) \\
343 & =x+2 \\
341 & =x
\end{aligned}
$$

Logarithmic Domains
Since the inverse of an exponential function is a logarithmic function, the domain of a logarithmic function is the range of the corresponding exponential function.

$$
\mathrm{y}=\log _{x} \sqrt{x} \quad\{x \in R|x|>0\} \quad \text { Remember, the base is: } \quad b>0, b \neq 1
$$

Example 3: Determine the domain of the following:

Inverse Log Functions
Finding the inverse of a \log function always refers to the relationship between logarithms and exponential functions.

$$
\log _{b} x=y \quad \Leftrightarrow \quad b^{y}=x
$$

Steps to find the inverse:

1. Reverse $x \leftrightarrow y$
2. Isolate the power or the logarithm
3. Switch: exponential form $\leftrightarrow \log$ form
4. Solve for y

Example 4: Determine the inverse of the following
i) $f(x)=6^{3 x+2}-4$

$$
\text { ii) } y-3=\log _{6}(2 x-5)
$$

$$
y=6^{3 x+2}-4
$$

inv: $x=6^{3 y+2}-4$
i iSolate

$$
x+4=6^{3 y+2}
$$

rewrite: $\log _{6}(x+4)=3 y+2$
Solve for
inv: $x-3=\log _{6}(2 y-5)$ a log a ready
alone) alone)
rewrite: $6^{x-3}=2 y-5$
,
Assignment p.211\#1-5,13

$$
\text { p. } 211 \#(-4(\text { left }), 5,13
$$

Logarithms
Day 3: Log Laws
A logarithm is just the inverse of an exponential function.
Just like there are established and proven rules for exponents, there are established and provable rules for logarithms.

Rules for Logarithms (The Log Laws)

- $\quad \log _{b} 1=0$

$$
b^{0}=1
$$

Product Rule: $\quad \log _{b} x y=\log _{b} x+\log _{b} y$

$$
\begin{array}{ll}
a=\log _{b} x & x y=b^{a} \cdot b^{c} \\
x=b^{a} & x y=b^{a+c} \\
c=\log _{b} y & \log _{b} x y=a+c \\
y=b^{c} & \log _{b} x y=\log _{b} x+\log _{b} y
\end{array}
$$

Quotient Rule: $\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$

$$
\begin{aligned}
& a=\log _{b} x \\
& x=b^{a} \\
& c=\log _{b} y \\
& y=b_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{y}=\frac{b^{a}}{b^{c}} \\
& \frac{x}{y}=b^{a-c} \\
& \log _{b} \frac{x}{y}=a-c \\
& \log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y
\end{aligned}
$$

Power Rule: $\log _{b} x^{n}=n \cdot \log _{b} x$

$$
\begin{aligned}
a=\log _{b} x & \left(b^{a}\right)^{n} \\
x=b^{a} & b^{n} \\
x & =x^{n} \\
a n & =\log _{b} x^{n} \\
n \log _{b} x & =\log _{b} x^{n}
\end{aligned}
$$

Change of Base: $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$

$$
\begin{aligned}
& y=\log _{b} a \\
& a=b^{y} \\
& \log _{x} a=\log _{x} b^{y}
\end{aligned}
$$

$$
\begin{aligned}
\log _{x} a & =y \log _{x} b \\
y & =\frac{\log _{x} a}{\log _{x} b} \\
\log _{x} a & =\frac{\log _{x} a}{\log _{x} b}
\end{aligned}
$$

Inverse property:

- $\log _{b} b^{x}=x$
- $\log _{b} b=1$

$$
b^{\prime}=b
$$

Example: Simplify $\log _{2} 5+\log _{2} 7$

$$
\log _{2}(5 \cdot 7)
$$

Example: Simplify $\log _{2} 24-\log _{2} 8$

$$
\frac{\log _{2} \frac{24}{8}}{\log _{2} 3}
$$

Example: Simplify $\log _{2} 16$

$$
\begin{aligned}
& \log _{2} 2^{4} \\
& 4 \log _{2} 2
\end{aligned}
$$

$$
4(1)
$$

4
Example: Find $\log _{3} 7$ to 3 decimal places

$$
\begin{aligned}
\log _{3} 7 & =\frac{\log 7}{\log 3} \\
& =1.771
\end{aligned}
$$

Example 1: Write $\log \frac{25}{9}$ in terms of $\log 3$ and $\log 5$

Example 3: Find the exact value of $\log _{4} 64^{3}$

$$
\begin{aligned}
& \log _{4}\left(4^{3}\right)^{3} \\
& \log _{4} 4^{9} \\
& 9 \log _{4} 4 \\
& 9(1) \\
& 9
\end{aligned}
$$

Example 2: Find the exact value of

$$
\begin{aligned}
& \log _{3} 27+\log _{3} \sqrt{3} \\
& \log _{3} 27 \sqrt{3} \\
& 33^{3}+\log _{3} 3^{1 / 2} \\
& 3 \log _{3} 3+\frac{1}{2} \log _{3} 3 \\
& 3(1)+\frac{1}{2}(1) \\
& 3+\frac{1}{2} \\
& 7 / 2
\end{aligned}
$$

Example 4: Find the exact value of $\log _{\frac{1}{4}} \frac{16^{3}}{2^{-3}}$

$$
\log _{\frac{1}{4}} \frac{2^{4 \cdot 3}}{2^{-3}}
$$

$$
\begin{aligned}
& \log _{\frac{1}{4}} \frac{2^{12}}{2^{-3}} \\
& \log _{\frac{1}{4}} 2^{15}
\end{aligned}
$$

$$
\frac{15}{-2} \frac{\log ^{2}}{\log ^{2}}=\frac{-15}{2}
$$

Example 5: Expand the following $\log _{7} x^{2} y \sqrt[3]{z}$

$$
\begin{aligned}
& \log _{7} x^{2}+\log _{7} y+\log _{7} \sqrt{2} \\
& 2 \log _{7} x+\log _{7} y+\log _{7} z^{1 / 3} \\
& 2 \log _{7} x+\log _{7} y+\frac{1}{3} \log _{7} z
\end{aligned}
$$

Assignment p. 221 \#1-3 (left side)

Logarithms
Day 4 : Simplifying Logarithms
Simplifying Logarithmic Functions:

1. Understand rules \#1-6 from yesterday.
2. Do not make up your own rules for logarithms. Common mistakes:

$$
\log (A+B) \neq \log A+\log B \quad \frac{\log a}{\log b} \neq \log a-\log b \quad(\log x)^{2} \neq 2 \log x
$$

3. Know how to change from exponential form to logarithmic form, and vice versa.

$$
y=\log _{b} x \quad \Leftrightarrow \quad b^{y}=x
$$

4. Look for exponential/power relationships between b and x in $\log _{b} x$.

Example 1: Simplify $3 \log _{2} x-2 \log _{2} 3$

$$
\begin{aligned}
& \log _{2} x^{3}-\log _{2} 3^{2} \frac{x^{3}}{9}
\end{aligned}
$$

Example 2: Simplify $7^{2 \log _{7} 5}$

$$
\begin{aligned}
& 7^{\log _{7} 5^{2}} \\
= & 5^{2} \\
= & 25
\end{aligned}
$$

Example 4: Simplify $\frac{3}{2} \log 9 x^{4}-\frac{1}{3} \log y^{6}$

$$
\begin{aligned}
& \log \left(9 x^{4}\right)^{3 / 2}-\log \left(y^{6}\right)^{1 / 3} \\
& \log \left(3^{2} x^{4}\right)^{3 / 2}-\log y^{2} \\
& \log 3^{3} x^{6}-\log y^{2} \\
& \log \frac{3^{3} x^{6}}{y^{2}} \\
& \log \frac{27 x}{y^{2}}
\end{aligned}
$$

Example 5: Simplify $\frac{1}{\log _{a} x}-\frac{1}{\log _{b} x}$
Example 6: Simplify $\left(\log _{3} 10\right)(\log 45-\log 5)$

$$
\begin{gathered}
\frac{\log _{a} a}{\log _{a} x}-\frac{\log _{b} b}{\log _{b} x} \\
\log _{x} a-\log _{x} b \\
\log _{x}\left(\frac{a}{b}\right)
\end{gathered}
$$

$$
\begin{align*}
& =\left(\log _{3} 10\right)\left(\log \frac{45}{5}\right) \\
& =\left(\log _{3} 10\right)\left(\log _{2} 9\right) \text { base } 10! \\
& =\frac{\log 10}{\log 3} \cdot \log 3^{2} \\
& =\frac{\log 10}{\log 3} \cdot(2 \log 3) \\
& =2 \log 10
\end{align*}
$$

Example 7: If $a=\log 5$ and $\mathrm{b}=\log 3$, what is $\log _{3} 45$ in terms of a and b ?

* notice bases ore different

$$
\begin{aligned}
\log _{3} 45 & =\frac{\log (45)}{\log (3)} \\
& =\frac{\log (9 \cdot 5)}{\log 3} \\
& =\frac{\log \left(3^{2} \cdot 5\right)}{\log (3)} \\
& =\frac{\log 3^{2}+\log 5}{\log 3} \\
& =\frac{2 \log 3+\log 5}{\log 3} \\
& =\frac{2 b+a}{b}
\end{aligned}
$$

$$
\begin{aligned}
& \log 3=b \\
& \log 5=a
\end{aligned}
$$

Assignment p. 222 \#4, 5 and p. 228 \#2a-d (Extension: p. 228 \#2e-i)

Logarithms
Day 5: Solving Equations I

Using the rules we have established for logarithmic functions, we can now start to solve logarithmic equations. Remember, an equation has an equal sign, so you can "find x ".

Be careful of logarithmic equations, though: the solutions must be a part of the domain of that function.

$$
y=\log _{b} x \quad \text { Note: } b>0, b \neq 1, x>0
$$

Steps for Solving Logarithmic Equations:

Example 1: Solve for $\mathrm{x}: \quad \log _{9}(x-5)=1-\log _{9}(x+3)$
(1) $\log _{9}(x-5)+\log _{9}(x+3)=1 \quad \longrightarrow \therefore x=6, x=-4$

$$
\log _{a}[(x-5)(x+3)]=1
$$

$$
\begin{equation*}
q^{\prime}=(x-5)(x+3) \tag{2}
\end{equation*}
$$

$$
a=x^{2}+3 x-5 x-15
$$

$$
0=x^{2}-2 x-24
$$

$$
0=(x-6)(x+4)
$$

Example 2: Solve for x :

$$
\text { (1) } \quad \begin{aligned}
\log _{3}[(x-2) \cdot 10] & =\log _{3}\left(x^{2}+3 x-10\right) \\
\text { (2) } \quad & \left.\quad \begin{array}{rl}
10(x-2) & =x^{2}+3 x-10 \\
10 x-20 & =x^{2}+3 x-10 \\
0 & =x^{2}-7 x+10 \\
0 & =(x-5)(x-2) \\
x & =5, \quad x \forall 2
\end{array}\right)
\end{aligned}
$$

(4) 5 checks out but 2 causes

$$
\log (2-2)
$$

$$
x=5
$$

Steps for solving Exponential Equations:
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { If you can change to the same base } \\
\text { (we did this earlier in the chapter!) } \\
\text { e.g. } 9^{x+2}=3^{x-1}\end{array} & \text { If you CANNOT change to the same base } \\
\hline \text { 1. Change all powers to the same base } & \begin{array}{l}\text { egg. } 5^{x+2}=2 \cdot 3^{2 x-1} \\
\text { 1. Simplify if possible, then take the log of both } \\
\text { sides (base 10) }\end{array} \\
\hline \begin{array}{l}\text { 2. Simplify into a single power on each side } \\
\text { Aim for: single power = single power }\end{array} & \begin{array}{l}\text { 2. Use log laws to move exponents in front of each } \\
\text { log. }\end{array} \\
\hline \text { 3. Compare exponents using the rule } \\
b^{x}=b^{y} \Leftrightarrow \quad x=y\end{array}
$$ \quad \begin{array}{l}3. Expand out the logarithms; move logs containing

variables to one side, and logs without variables to

the other.\end{array}\right\}\)| 4. Isolate and solve for the unknown (usually by |
| :--- |
| factoring out the variable). Simplify to a single log |
| if possible. |

Example 3: Solve for $x: \quad 5^{x+2}=2 \cdot 3^{2 x-1}$
(2)
(1) $\log \left(5^{x+x}\right)=\log \left(2 \cdot 3^{2 x-1}\right)$
(3)

$$
x \log 5+2 \log 5=\log 2+2 \times \log 3-\log 3
$$

$$
\begin{aligned}
& x \log 5+2 \log 5=\log 2 x \log 3=\log 2-\log 3-2 \log 5 \\
& x \log 5-2 x \log 3-2 \log
\end{aligned}
$$

(4) $x(\log 5-2 \log 3)=\log 2-\log 3-2 \log 5$

> (type in calculator)
(5)

$$
x=6.17
$$

Assignment: $\lg 227 \# 1,4$

Logs Day 6: Solving Equations II
Solving Log Equations: with a twist

Expressing equations in terms of stated or defined variables

Sometimes we have a question that only contains variables and we need to solve the logarithmic equation in terms of the stated variables. This is just a slight variation on what we have already looked at, just with no numbers. aim for "single log $=$ single log "
Example 4: Solve for A in terms of B and $\mathrm{C}: 2 \log \mathrm{~A}-3 \log \mathrm{~B}=2 \log \mathrm{C}$

$$
\begin{aligned}
\log A^{2}-\log B^{3} & =\log C^{2} \\
\log \left(\frac{A^{2}}{B^{3}}\right) & =\log \left(C^{2}\right) \\
\therefore \frac{A^{2}}{B^{3}} & =C^{2} \\
A^{2} & \left.=B^{3} C^{2} \quad\left(A^{2}\right)^{1 / 2}=\left(B^{3}\right)^{2} C^{2}\right)^{\prime 2} \\
A & =B^{3 / 2} C
\end{aligned}
$$

Solving Log Equations when the bases don't match (Change base.
Example ${ }^{2}$ /: Solve for x :

$$
\begin{aligned}
& \begin{array}{l}
3 \log _{9} x+\log _{3} x=5 \\
3\left(\frac{\log _{3} x}{\log _{3} 9}\right)+\log _{3} x=5 \\
\frac{\log _{3}(x)}{\left(\log _{3}\left(3^{2}\right)\right.}+\log _{3}(x)=5
\end{array} \quad \rightarrow \begin{array}{c}
\text { Rewitein } \\
\text { exponent form: }
\end{array} \\
& 3^{2}=x \\
& 9=x
\end{aligned}
$$

change of base. Get x out of base!
Example ${ }^{3}$ \&: Solve for x :

$$
\begin{gathered}
3 \log _{8} x-2 \log _{x} 8=-5 \\
3 \log _{8} x-2\left(\frac{\log _{8} 8}{\log _{8} x}\right)=-5
\end{gathered}
$$

Need to "clear fractions" but easy to get confused.

Let

$$
a=\log _{8} x
$$

$$
3 a-\frac{2}{a}=-5
$$

now
clear
fractions!

$$
\begin{gathered}
3 a^{2}-2=-5 a \\
3 a^{2}+5 a-2=0 \\
(3 a-1)(a+2)=0 \\
a=\frac{1}{3} \quad a=-2
\end{gathered}
$$

Replace back for $a=\log _{8} x$

$$
\begin{aligned}
& \log _{8} x=\frac{1}{3} \quad \log _{8} x=-2 \\
& 8^{1 / 3}=x \quad 8^{-2}=x \\
& 2=x \quad \frac{1}{64}=x
\end{aligned}
$$

Check:

Assignment: p. 229 \#3,5,7

Logarithms Day 7: Applications
Using the rules we have established for exponential and logarithmic functions, we can now start to apply these to real life situations.

Recall from previous chapter:

Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Discrete Growth

$$
\mathrm{F}=\mathrm{I}(\mathrm{r})^{\frac{\mathrm{t}}{\mathrm{p}}}
$$

Continuous Growth

$$
\mathrm{F}=\mathrm{Ie}^{\mathrm{rt}}
$$

The Natural Base (e) and the Natural Log (ln)

$$
\mapsto 2.71828 \ldots
$$

The natural base (e) is so useful, that its inverse has its own name:
The inverse of e^{x} is $\log _{e} x$ which we call $\ln x$
"In" is "the natural log" (log base "e") and is pronounced "lawn"

Just like there is a \log button on your calculator, you will also be able to find a \ln button.

Example 1: Eric inherits $\$ 10000$ and invests it in a guaranteed investment certificate (GIC) at 6%. How long will it take to be worth $\$ 15000$ it is compounded a) monthly b) continuously?
a) Compounded monthly:

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=15000 \\
& P=10000 \\
& r=0.06 \\
& n=12 \\
& t=\text { ? } \\
& 15000=10000\left(1+\frac{0.06}{12}\right)^{12 t} \\
& \frac{15000}{10000}=\frac{10000(1.005)^{12 t}}{10000} \\
& \begin{array}{l}
1.5=(1.005)^{12 t} \\
\log (1.5)=\log (1.005)^{12 t}
\end{array} \\
& \frac{\log 1.5}{12 \log (1.005)}=\frac{12 t \cdot \log (1.005)}{12 \cdot \log (1.005)} \\
& 6.7746=t
\end{aligned}
$$

a) 6.77 years
b) Compounded Continuously:

$$
\begin{array}{l|l}
F=15000 & F=I e^{r t} \\
I=10000 & 15000 \\
r=0.06 & \frac{10000(e)^{0.06 t}}{100000} \\
t=? & 1.5 \\
t=e^{0.06 t} \\
\ln (1.5) & =\ln e^{0.06 t} \\
\frac{\ln 1.5}{0.06} & =\frac{0.06 t}{0.06} \\
6.757 & =t \\
6.76 & =t
\end{array}
$$

b)

Example 2: A major earthquake of magnitude 8.3 is 120 times as intense as a minor earthquake. Determine the magnitude, to the nearest tenth, of the minor earthquake. (Rewrite as $\log _{10}$)

$$
\begin{aligned}
& \frac{10^{8.3}}{10^{x}}=120 \\
& 10^{8.3-x}=120 \\
& \log _{10}(120)=8.3-x \\
& 2.079=8.3-x \\
& x=6.2208
\end{aligned}
$$

$$
1662718.596=10^{x}
$$

$$
\begin{aligned}
\log _{10}\left(16627818 S_{6}\right) & =x \\
6.2208 & =x
\end{aligned}
$$

The minor earthquake measures 6.2 on the Richter scale.

Example 3: The half-life of carbon-14 is 5730 years. A bone sample is found to have 49.5% of the C-14 remaining. Determine the age of the bone.

$$
\begin{align*}
& F=I(r)^{t / p} \tag{r}\\
& F=49.5(\%) \\
& I=100(\%) \\
& r=1 / 2 \\
& P=5730 \\
& \text { thalf-life } \\
& t=?
\end{align*}
$$

$$
\frac{49.5}{100}=\frac{100}{100}\left(\frac{1}{2}\right)^{\frac{t}{5730}}
$$

$$
0.495=(1)^{t / 5730}
$$

$$
\log (0.4 .45)=\log \left(\left(\frac{1}{2}\right)^{y_{7} 730}\right)
$$

$$
\log 0.495=\frac{t}{5730} \cdot \log (1 / 2)
$$

$$
\left[\begin{array}{l}
t=\frac{5730 \cdot \log 0.495}{\log \left(\frac{1}{2}\right)} \\
t=5813.08
\end{array}\right.
$$

The bone is 5813 years old.

Example 4: The population of a fish in a lake is increasing at a rate of 3.5% per year. How long will it take the fish population to double?

$$
\begin{aligned}
& F=I e^{r t} \\
& F=2\}^{\text {"doubles" }} \\
& I=1 \\
& r=0.035 \\
& t=?
\end{aligned}
$$

Assignment: p. 236 \#1-11

$$
\begin{aligned}
& 2=1 . e^{0.035 t} \\
& 2=e^{0.035 t} \\
& \ln 2=\ln e^{0.035 t} \\
& \frac{\ln 2}{0.035}=\frac{0.035 t}{0.035} \\
& 19.804=t
\end{aligned}
$$

It will take 19.8 years.

