\qquad

Polynomials

Chapter Notes

Assignment List

Date	Lesson	Assignment
	0. Polynomials Exploration	Polynomials Exploration Handout
	1. Features of Polynomials I	Mickelson Page 119 \#2-3, 6a-f, 7acegi \& Page 127 \#1
	2. Features of Polynomials II	Mickelson Page 120 \#4, 9abcehijm (for 9hij use factoring by grouping) \#5
	3. Graphing Polynomials	Mickelson Page 127 \#2ab, 3ab, 5ab, 6, 7ab \& Graphing Polynomials worksheet
	4. Polynomial Division	Mickelson Page 135 \#1ac, 2acfhk, 3bcdgh, 4a-d
	5. Remainder and Factor Theorem	Mickelson Page 143 \#1, 2abcd, 3abce
	6. Rational Root Theorem	Mickelson Page 144 \#4a-e, 5ace and Polynomials Supplement
		Practice Test
		Review
		Polynomials Test

Polynomials Day 1: Features of Polynomials I

Key Vocabulary:			
Polynomial	Leading Coefficient	Zeros	Multiplicity
Leading Term	End behaviour	x-intercepts	
Degree	Turning Points	y-intercept	

A polynomial expression has the form:

$$
a x^{n}+b x^{n-1}+c x^{n-2}+d x^{n-3}+\cdots+i x^{2}+j x+k, \text { where } a \neq 0 \text { and }
$$

1. exponents must be whole numbers (may skip descending powers)
2. coefficients must be real numbers

The polynomial's degree is defined by n and its leading coefficient is \qquad highest power of x

A coeff. of highest power of x

Example 1:

real numbers

Polynomial	Degree	Leading coefficient	Name
$f(x)=5 x^{4}-4 x^{2}-3$	4	5	Polynomial
$g(x)=\sqrt{5} x^{3}-2 x^{2}-3 x$	3	$\sqrt{5}$	Cubic
$h(x)=-3 x^{2}-3$	2	-3	Quadratic
$p(x)=-3+4 x^{1}$	1	+4	Linear
$d(x)=-3 x^{0}$	0	-3	Constant

Shape: Polynomial functions are \qquad Continuous with no breaks or sharp corners.

Are these polynomials?

$$
y=a x+b
$$

$y=a x^{2}+b x+c$
yes

$y=a x^{3}+b x^{2}+c x+d$
yes

No!

The End Behaviour of polynomial functions is determined by the leading coefficient $\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}$.

$n \rightarrow \frac{\text { basic shape of }}{\text { graph }} ; a \rightarrow \frac{\text { end behaviour }}{\text { (always look on RiGTside) }}$
Turning points - generated by the 'middle' terms of a polynomial function.
If the degree is n. the maximum number of turning points is $n-1$ (but could be \qquad fewer).).

Example 2: How many turning points are there on this graph? What is the minimum degree of the polynomial?

$$
\begin{aligned}
& 4 \text { turning points } \\
& \{4+1\} \rightarrow \text { must be at least degree } 5
\end{aligned}
$$

Example 3: Determine the degree, the end behaviour and the maximum number of turning points of the following polynomial functions.
a) $f(x)=-5 x^{5}-3 x^{4}+\sqrt{7} x^{2}-4$
b) $\quad g(x)=2^{-3} x^{8}+5 x^{6}-\frac{6}{11} x^{2}+9$
$n=5=$ degree (odd, arrows opp.)
$a=-5 \quad a<0 \therefore$ ends DowN on right, $n=8=$ degree (even, arrows SAMA) $a=2^{-1}=\frac{1}{8} \quad a>0 \therefore$ ends UP on rt (lp on left) max 4 turning points
Assignment: p. 119 \#2-3, 6a-f, 7acegi \& p. 127 \#1
max 7 turning points

Polynomials Day 2: Features of Polynomials II

$$
\text { set } y=0 \bigodot
$$

Zeros) of a Polynomial Function - locations) where the polynomial function crosses the x -axis
a) also called roots, solutions or x-intercepts
b) determined by factoring a polynomial expression
c) zeros can be real or imaginary (we only deal with real in PC 12)

$$
\text { Set }=0 \quad \text { factor! GCF? Diff. of Squares? }
$$

Example 1: Find all the real zeros of $\vec{f}(x)=x^{5}-16 x \quad \iota^{\text {g cf }}=x$

$$
\begin{aligned}
0 & =x^{5}-16 x \\
0 & =x\left(x^{4}-16\right) \text { diff. of sq. } \\
0 & =x\left(x^{2}+4\right)^{2}\left(x^{2}-4\right)^{2} \text { diff. of sq. } \\
0 & =x\left(x^{2}+4\right)(x+2)(x-2) \\
\therefore \quad & \downarrow=0 \quad \downarrow \\
& x=0, \pm 2
\end{aligned}
$$

A polynomial function of degree \boldsymbol{n} has, at most, n real zeros.
Remember, the zeros of the polynomial are really just the x-interce.pts

Minimum and Maximum number of zeros:

For leading term, $\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}$, if \boldsymbol{n} is even, may cross the x-axis from 0 to \boldsymbol{n} times.

ex:
E.g. $\quad f(x)=3 x_{\substack{4 \\ n=4 \\ \uparrow \\ \text { even, min }=0}} \quad \min : 0 x^{3}+7 \quad \max : 4$

For leading term, $\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{n}}$, if \boldsymbol{n} is odd, may cross the x -axis from 1 to \boldsymbol{n} times.
(must cross at least once)

$$
\begin{aligned}
& \text { Ecg. } g(x)=\sqrt{5} x_{\uparrow}^{3}-2 x^{2}-3 x \\
& n=3 \text { (max) } \\
& q \\
& \text { min: } 1 \\
& \max : 3 \\
& \text { odd, } m i_{n}=1
\end{aligned}
$$

* must

Cross at
least once
because because
arrows

Multiplicity - A polynomial of degree \boldsymbol{n} can have at most \boldsymbol{n} distinct solutions. When a solution is repeated \boldsymbol{r} times, the solution has a "multiplicity of \boldsymbol{r}."

Example 2: a) State the zeros and list the multiplicity of each zero. Then state the degree of the polynomial. 6 already factored : $P(x)=-\frac{1}{2}(x+2)^{2}(x-1)^{3}(x-3)^{1} \subset \quad$ multiplicity

Zeros:

$$
x=-2, x=1, x=3
$$

Multiplicity: \qquad $m=2 \quad m=3 \quad m=1$

Degree:
$2+3+1=$ degree 6

b) The polynomial of the graph above is shown above. What do you notice about the graph at the different x intercepts when they have different multiplicities?

$$
\begin{aligned}
& 厶_{m=1} \text { "slice"/"cut"/ "line" through axis } \\
& \rightarrow m=2 \text { "bounce" off axis } \\
& \rightarrow m=3 \text { "squiggle" through axis }
\end{aligned}
$$

Example 3: Find all the real zeros, and the multiplicity of each zero.
a) $h(x)=-x^{3}+16 x+3 x^{2}-48 \quad$ Factor by \quad grouping
b) $k(x)^{0}=-3 x^{4}\left(x^{2}-4 x-5\right)$
$0=\underbrace{-x^{3}+16 x}_{\text {gcf: }-x}+\underbrace{3 x^{2}-48}_{\text {gcf:3 }}$
$0=-x\left(x^{2}-16\right)+3\left(x^{2}-16\right)$
$0=\underset{\substack{\text { gif }=-1}}{-x+3})(\underbrace{x^{2}-16}_{\text {diff. of squares }})$
$0=-(x+3)^{\prime}(x+4)^{\prime}(x-4)^{\prime}$
$\therefore x=-3, \pm 4$
(each has a multiplicity of 1)

Assignment: p. $120 \# 4,{ }^{\# 5} 9$ abcehijm (for 9 hid use factoring by grouping)

Polynomials Day 3: Graphing Polynomials

Graphing a polynomial function can be summarized using the following steps:

1. Plot the y-intercept. (Set $x=0$ and solve for \mathbf{y})
2. Plot the x -intercepts. (Find the zeros from factoring. These are the x -intercepts.)
3. Determine the shape at each \underline{x}-intercept from the multiplicities. (See below)

4. If the highest power of x is positive $(\boldsymbol{a}>0)$ it ends UP on the right. If the highest power of x is negative $(\boldsymbol{a}<0)$ it ends DOWN on the right.
5. Trace backwards through all points. Make sure to "slice," "bounce" or "squiggle" at x-intercepts based on multiplicity (see step 3). (Right to left)
6. Double check: Even-degree polynomials "end" in the same direction. Odd-degree polynomials "end" in opposite directions.

Example 1: Sketch: $f(x)=-(x+2)^{2}(x-2)^{3}$
y-int $(\operatorname{set} x=0)$

$$
\begin{aligned}
y & =-(1+2)^{2}(0-2)^{3} \\
& =-(4)(-8) \\
y & =+32 \quad(910+(0,32) \text { at end })
\end{aligned}
$$

(2) $x-\operatorname{int}(\sec y=0)$

$$
\begin{gathered}
0=-(x+2)^{2}(x-2)^{3} \\
\downarrow \\
\therefore x=-2 \quad \downarrow \\
\quad x=+2
\end{gathered}
$$

(3) $($ mull. of 2$)($ mu. of 3$)$
(4) $a=-1 \therefore a<0$ ends down on right
(5)

(6) Ends go in OPPOSITE directions. Check!

a Left of 0
Example 2: Sketch: $\quad \mathcal{O}^{\circ}(x)=(x-a)^{3}(x-b)^{\prime}(x-c)^{2}$ where $a<0<b<c$
zeros:

$$
\therefore x=a \quad x=b \quad x=c
$$

m . of $3 \mathrm{~m} .1 \mathrm{~m} \cdot 2$
degree: $3+1+2=6$
leading coeff.
is positive,
soUP on right
(no need to check y-int.)

so checks out!

Du Ex? First.
Example 4: Determine the equation of the polynomial $g(x)$ in factored form, if $g(-2)=-12$ and the zeros are $0,0,-1,-\frac{2}{3}$
($x \overline{x \times x \times}$)... *Remember " a " out front! *

$$
g(x)=a(x-0)(x-0)(x+1)(3 x+2)
$$

$g(x)=a x^{2}(x+1)(3 x+2) \quad$ sabin a point to solve for "a" $g(-2)=-12$

$$
-12=a(-2)^{2}(-2+1)(3(-2)+2)
$$ is $\begin{gathered}(-2,-12) \\ x y\end{gathered}$

$$
-12=a(4)(-1)(-4)
$$

$$
-\frac{12}{16}=\frac{16 a}{16}
$$

$$
-\frac{3}{4}=a
$$

Example 3: Determine the equation of the polynomial in factored form.

$$
\begin{gathered}
P(x)=a(x-)(x)(x \quad \cdots \\
x \text {-int's are } x=-6, \underbrace{-2,2,6} \begin{array}{l}
\text { bounce" } \\
\therefore \text { multiplicity } \\
\text { of } 2
\end{array}
\end{gathered}
$$

$$
P(x)=a(x+6)^{\prime}(x+2)^{2}(x-2)^{\prime}(x-6)^{\prime}
$$

sub in a point $\left(\begin{array}{c}(0,-5) \\ x \\ y\end{array}\right.$ to solve for " a "

$$
\begin{aligned}
& -5=a(0+6)(0+2)^{2}(0-2)(0 \\
& -5=a(6)(4)(-2)(-6) \\
& -5=a(288) \\
& \frac{5}{288}=a
\end{aligned}
$$

$$
\therefore P(x)=-\frac{5}{288}(x+6)(x+2)^{2}(x-2)(x-6)
$$

Example 5: Sketch a graph of a polynomial function of lowest degree.

- Plot x-int's

- Imagine where graph is "above"
or "below"
- Sketch in... where does it "bounce"?

Graphing Polynomials Worksheet \& Assignment: p. 127 \#2ab, 3ab, Fab, 6, 7ab

Polynomials Day 4: Division
Dividing a polynomial function using long division uses the same techniques as long division of numbers.

Recall: $\quad 1537 \div 12$

(1) How many times does 12 go into 15? = 1
(2) $(1) \times(12)=12$ (unite below 15 and subtract)
(3) Bring down next digit \downarrow
3
(4) Repeat until you can no longer divide... remaining number is REMAINDER.)

The result of the division of a polynomial $\mathrm{P}(\mathrm{x})$ by a binomial $\mathrm{D}(\mathrm{x})$ can be written in the forms:
$P(x)=D(x) Q(x)+R \quad$ and $\quad \frac{P(x)}{D(x)}=Q(x)+\frac{R}{D(x)}$ where $\mathrm{Q}(\mathrm{x})$ is the quotient and R is the remainder

$$
1537=(12)(128)+R \quad \frac{1537}{12}=128+\frac{1}{12}
$$

Example 1: Divide: p

$$
\begin{aligned}
& \text { Example 1: Divide: } P \\
& \left(5 x^{3}+10 x^{2}-13 x-9\right) \div(x-2)
\end{aligned}
$$

and write final solution in both forms.
(1) How manytimes does x go into

$$
5 x^{3} ? \frac{5 x^{3}}{x}=5 x^{2}
$$

(2) $5 x^{2}(x-2)$

$$
=5 x^{3}-10 x^{2}
$$

(write below

$$
5 x^{3}+10 x^{2}
$$

and Subtra (t)

* Careful: $=10 x^{2}-10 x^{2}$

$$
=20 x^{2}
$$

(3) Bring down next term \downarrow

$$
-13 x
$$

(4) Repeat. Anything left is the REMAINDER.

$$
\begin{aligned}
& 5 x^{3}+10 x^{2}-13 x-9=(x-2)\left(5 x^{2}+20 x+27\right)+45 \\
& \frac{5 x^{3}+10 x^{2}-13 x-9}{(x-2)}=5 x^{2}+20 x+27+\frac{45}{(x-2)}
\end{aligned}
$$

Synthetic Division

An alternate (and much quicker and easier) method of dividing a polynomial by a binomial is through the use of synthetic division. It performs the division without writing variables and reduces the number of calculations.

$$
P(x) \div D(x)
$$

Example 2: Divide the following using synthetic division. $\left(5 x^{3}+10 x^{2}-13 x-9\right) \div(x-2)$

Setup:

write only coefficients of $P(x)$. Put the zero of $D(x)$
Find the zero of
the) bracket $D(x$ $x=+2$

Steps

* $*$| +2 | 5 | 10 | 13 | -9 |
| :---: | :---: | :---: | :---: | :---: |
| \downarrow^{8} | $10 l^{-13}$ | | | |
| 5 | 20 | | | |

(1) drop dow the 5 .
(2) Multiply $5 \times 2=10$

Write in next spot.
(3) Add down the column.
(4) Repeat.

1drop down the 5. Multiply by 2 .

$$
5>2=10 \text {. Write } 10 \text { in next spot. }
$$

SAME ANSWER!
$5 x^{3}+10 x^{2}-13 x-9=(x-2)\left(5 x^{2}+20 x+27\right)+45$
Example 3: Divide the following: $\left(4 x^{3}+7 x-5\right) \div(x-3)$
"

$$
-3
$$

* Careful! x^{2} term is missing: $\frac{4}{4 x^{3}+0 x^{2}+7 x-5} \longrightarrow$ woe +3

$$
\frac{4 x^{3}+7 x-5}{(x-3)}=4 x^{2}+12 x+43+\frac{124}{(x-3)}
$$

$Q(x)=4 x^{2}+12 x+43$

NOTE: In order to do both synthetic division and long division, all descending powers of the polynomial $\mathrm{P}(\mathrm{x})$ must be present. If any power is missing from $\mathrm{P}(\mathrm{x})$, consider it as a coefficient of zero . (egg. $0 \mathrm{x}^{2}$)

Example 4: Divide using synthetic division: $\left(2 x^{4}-3 x^{3}-7 x^{2}+12 x-4\right) \div\left(x^{2}-4\right)$ and write final solution in both forms.

$$
\begin{gathered}
(x+2)(x-2) \\
\text { zero: }-2
\end{gathered} \rightarrow \text { zero: }+2
$$

start with one of them:

start wit
$\therefore(x-2)$ divides in perfectly/is a factor.

$$
2 x^{4}-13 x^{3}-7 x^{2}+12 x-4=\left(x^{2}-4\right)\left(2 x^{2}-3 x+1\right)
$$

(B)

$$
\frac{2 x^{4}-13 x^{3}-7 x^{2}+12 x-4}{x^{2}-4}=2 x^{2}-3 x+1
$$

Example 5: Divide the following using synthetic division.

$$
\begin{aligned}
\left(2 x^{3}+3 x^{2}-5 x+2\right) \div & (2 x+1) \\
\downarrow & \\
& z e r o:-\frac{1}{2} \\
& \text { \& tricky! } \\
& \text { \& same process } \\
& \text { until the end. }
\end{aligned}
$$

$$
\left(x+\frac{1}{2}\right)\left(2 x^{2}+2 x-6\right)+5
$$

This will have a gif':
$g c f=2$

$$
\begin{aligned}
& \left(x+\frac{1}{2}\right)(2)\left(x^{2}+x-3\right)+5 \\
& (2 x+1)\left(x^{2}+x-3\right)+5
\end{aligned}
$$

$$
\left(2 x^{3}+3 x^{2}-5 x+2\right)=(2 x+1)\left(x^{2}+x-3\right)+5
$$

Synthetic division can also be used as a quick technique to determine a Missing value of a polynomial.
Example 6: Solve for k when $x^{4}+3 x^{3}+k x-1 \quad$ is divided by $x-2$ the remainder is -5 .

$$
\left(x^{4}+3 x^{3}+0 x^{2}+k x-1\right) \div(\underset{\sim}{(x-2)} \underset{\text { use }}{\downarrow}+2 \quad R=-5
$$

$$
\begin{aligned}
\text { Remainder } & =2 k+39 \text { also }=-5 \\
& \therefore \quad 2 k+39=-5
\end{aligned}
$$

Solve!

$$
\begin{aligned}
2 k+39 & =-5 \\
-39 & -39 \\
\frac{2 k}{2} & =\frac{-44}{2} \\
k & =-22
\end{aligned}
$$

Assignment p. 135 \#1ac, 2acfhk, 3bcdgh, 4a-d

Polynomials Day 5: Remainder and Factor Theorem

The Remainder Theorem
When a Polynomial $P(x)$ is divided by a \qquad Factor in the form $(x-a)$, the remainder is $P(a)$.

Example 1:
Determine the remainder when $3 x^{3}-5 x^{2}+15 x-9$ is divided by $x+1$

$$
\begin{aligned}
& P(x)=3 x^{3}-5 x^{2}+15 x-9 \\
& P(-1)=3(-1)^{3}-5(-1)^{2}+15(-1)-9 \\
& \\
& =-3-5-15-9 \\
& P(-1)=-32
\end{aligned}
$$

\uparrow The remainder is -32 .
Example 2:
Determine the remainder when $4 x^{3}-8 x^{2}+5 x-3$ is divided by $2 x+1$

$$
\begin{aligned}
P(x) & =4 x^{3}-8 x^{2}+5 x-3 \\
P\left(-\frac{1}{2}\right) & =4\left(-\frac{1}{2}\right)^{3}-8\left(-\frac{1}{2}\right)^{2}+5\left(-\frac{1}{2}\right)-3 \\
& =-\frac{4}{8}-\frac{8}{4}-\frac{5}{2}-3 \\
& =-\frac{1}{2}-2-\frac{5}{2}-3
\end{aligned}
$$

$$
\underbrace{x+1}_{a=-\frac{1}{2}}
$$

Example 3:
Determine k if $4 y^{3}-k y^{2}+3 y-1 \div \underbrace{y-2}_{a=2}$ has a remainder of $1 . \quad P(a)=R \quad \therefore P(z)=1$

$$
\begin{aligned}
& P(y)=4 y^{3}-k y^{2}+3 y-1 \\
& P(2)=4(2)^{3}-k(2)^{2}+3(2)-1=1 \\
& 32-4 k+6-1=1 \\
& 37-4 k=1 \\
&-37-\frac{4 k}{-4}=\frac{-36}{च} \\
& k=9
\end{aligned}
$$

The Factor Theorem
A polynomial $P(x)$ has a factor of $x-a$ if and only if $P(a)=0$. In other words, it is a factor if the remainder is zero.

Example 4: Is $x-1$ a factor of $P(x)=x^{3}-3 x^{2}-x+3$

$$
\begin{aligned}
P(x) & =x^{3}-3 x^{2}-x+3 \\
P(1) & =(1)^{3}-3(1)^{2}-(1)+3 \\
& =1-3-1+3 \\
& =0 \text { Yes! Itis a factor! }
\end{aligned}
$$

sub in $x=+1$. if $P(1)=0$ then $(x-1)$ is a factor!

Example 5: Is $2 x+1$ a factor of $P(x)=8 x^{3}+6 x^{2}-9 x-5 \quad$ Sub in $x=-\frac{1}{2}$

$$
\begin{aligned}
P(x) & =8 x^{3}+6 x^{2}-9 x-5 \\
P\left(-\frac{1}{2}\right) & =8\left(-\frac{1}{2}\right)^{3}+6\left(-\frac{1}{2}\right)^{2}-9\left(-\frac{1}{2}\right)-5 \\
& =8\left(-\frac{1}{8}\right)+6\left(\frac{1}{4}\right)+\frac{9}{2}-5 \\
& =-1+\frac{3}{2}+\frac{9}{2}-5 \\
& =-6+\frac{12}{2}=-6+6=0
\end{aligned}
$$

$$
\begin{array}{r}
\text { Remainder }=P(a)=0 \\
\therefore \text { Yes! }(2 x+1) \\
\text { is a factor! }
\end{array}
$$

Polynomials Day 6: The Rational Root Theorem \& Solving Polynomial Equations

The Rational Root Theorem
If $f(x)=a x^{n}+b x^{n-1}+c x^{n-2}+\ldots+j x+k$ is a polynomial function with integer coefficients, every rational zero of $f(x)$ is of the form $\frac{m}{n}$ where m is the possible factors of k and n is the possible factors of a.

Example 1: List all the possible rational zeros of the polynomial $2 x^{3}-3 x^{2}-14 x+15$
zeros will be of the
factors of $2: 8$
T factors of 15 :
form $\frac{m}{n} \rightarrow \frac{ \pm 1 \pm 3 \pm 5 \pm 15}{ \pm 1 \pm 2}$

$$
\pm 1 \pm 2
$$

$$
\pm 1 \pm 3 \pm 5 \pm 15
$$

all Combinations! $\pm \frac{1}{1} \pm \frac{3}{1} \pm \frac{5}{1} \pm \frac{15}{1} \pm \frac{1}{2} \pm \frac{3}{2} \pm \frac{5}{2} \pm \frac{15}{2}$
Example 2: Factor fully $x^{4}-5 x^{3}+2 x^{2}+20 x-24$

- First list possible rational zeros: $\pm 1 \pm 2 \pm 3 \pm 4 \pm 6 \pm 8 \pm 12 \pm 24$
- Start by testing (easy) zeros to see if any have a remainder of zero (: are factors).
$\underbrace{2(x+2}_{(x-2)}\left|\begin{array}{cccc}1 & -5 & 2 & 20 \\ 1 & 2 & -6 & -8 \\ x^{2}-5 x+6 \\ 1 & -3 & -4 & 12 \\ 1 & -2 & 10 & -12 \\ 1 & -5 & 6 & 0\end{array}\right|$
factors more!

$$
(x-3)(x-2)
$$

Final answer: Use all factors!

$$
P(x)=(x-2)(x+2)(x-3)(x-2)
$$

$$
\begin{aligned}
(x-1)^{\text {test }} \quad & P(1)
\end{aligned}=(1)^{4}-5(1)^{3}+2(1)^{2}+20(1)-240 \times\left(\begin{array}{l}
\text { test } \\
(x+1){ }_{x=-1} \\
\end{array}\right.
$$

Do synth div. Get

$$
\begin{aligned}
& \text { synth div. Get } \\
& x^{4}-5 x^{3}+2 x^{2}+20 x-24 \div(x-2)=x^{3}-3 x^{2}-4 x+12
\end{aligned}
$$

Now test $x=-2$. Use NEW ONE ! $(x+2)$

$$
\begin{aligned}
& \text { 2. UGE NEW ONE! } \\
& \begin{aligned}
P(-2) & =(-2)^{3}-3(-2)^{2}-4(-2)+12 \\
& =-8-12+8+12=0
\end{aligned}
\end{aligned}
$$

Do Synth. Dir again!

Test $x=1 \quad(\div(x-1))$

Example 3: Factor fully $2 x^{3}-5 x^{2}-4 x+3$

$$
(x+1)\left(2 x^{2}-7 x+3\right)
$$

^ keep tactoring!

$$
=(x+1)(2 x-1)(x-3)
$$

Test $x=-1 \quad(\vdots(x+1))$

$$
\begin{aligned}
& 2(-1)^{3}-5(-1)^{2}-4(-1)+3 \\
& =-2-5+4+3=0
\end{aligned}
$$

(ac)

$$
-1 \times-6=6
$$

$$
\begin{aligned}
& 2 x^{2}-7 x+3 \\
& \left(x-\frac{1}{2}\right)\left(x-\frac{6}{2}\right) \\
& (2 x-1)(x-3)
\end{aligned}
$$

$$
-1+-6=-7
$$

de comp

$$
2 x^{2}-7 x+3
$$

$$
2 x^{2}-1 x-6 x+3
$$

$$
x(2 x-1)-3(2 x-1)
$$

$$
(2 x-1)(x-3)
$$

Example 4: Solve $0=(x-4)(x+5)(x-2) \quad \checkmark$ factored form!

$$
\therefore \quad x=4 \quad x=-5 \quad x=2
$$

Find the zeros:

Example 5: Solve $x^{3}-9 x^{2}+20 x-12=0 \leqslant$ need factored form. Synthetic Division!

$$
\begin{aligned}
\text { Test } x=1 & (\div(x-1)) \\
p(1) & =(1)^{3}-9(1)^{2}+20(1)-12 \\
& =1-9+20-12=0
\end{aligned}
$$

$$
(x-1)(x-2)(x-6)=0
$$

$$
\therefore x=1,2,6
$$

Assignment p. 144 \#4a-e, face and Polynomials Supplement

