Polynomials Chapter Notes Key

Assignment List

Date	Lesson		Assignment			
	0.	Polynomials Exploration	Polynomials Exploration Handout			
	1.	Features of Polynomials I	Mickelson Page 119 #2-3, 6a-f, 7acegi & Page 127 #1			
	2.	Features of Polynomials II	Mickelson Page 120 #4, 9abcehijm (for 9hij use factoring by grouping) #5			
	3.	Graphing Polynomials	Mickelson Page 127 #2ab, 3ab, 5ab, 6, 7ab Graphing Polynomials Worksheet			
	4.	Polynomial Division	Graphing Polynomials Worksheet Mickelson Page 135 #lac, 2acfhk, 3bcdgh, 4a-d			
	5.	Remainder and Factor Theorem	Mickelson Page 143 #1, 2abcd, 3abce			
	6.	Rational Root Theorem	Mickelson Page 144 #4a-e, 5ace and Polynomials Supplement			
			Practice Test			
			Review			
			Polynomials Test			

Polynomials Day 1: Features of Polynomials I

Key Vocabulary:			
Polynomial	Leading Coefficient	Zeros	Multiplicity
Leading Term	End behaviour	x-intercepts	
Degree	Turning Points	y-intercept	

A polynomial expression has the form:

 $ax^{n} + bx^{n-1} + cx^{n-2} + dx^{n-3} + \dots + ix^{2} + jx + k$, where $a \neq 0$ and

- 1. exponents must be <u>whole</u> (may skip descending powers)

2. coefficients must be <u>real</u> is defined by <u>n</u> and its leading coefficient is <u>a</u>. The polynomial's <u>degree</u> is defined by <u>n</u> and its leading coefficient is <u>a</u>. Thighest power of x to coeff. of highest power of x

Example 1:

Polynomial	Degree	Leading coefficient	Name
$f(x) = 5x^4 - 4x^2 - 3$	4	5	Polynomial
$g(x) = \sqrt{5}x^3 - 2x^2 - 3x$	M	√5	Cubic
$h(x) = -3x^2 - 3$	2	- 3	Quadratic
$p(x) = -3 + 4x^{\dagger}$	-	+ 4	Linear
$d(x) = -3 \chi^{\circ}$	0	-3	Constant

Shape: Polynomial functions are Continuous, with no breaks or sharp corners.

Are these polynomials?

	$y = x^{\bullet}$	$y = -x^{\prime}$	$y = x^2$	$y = -x^2$	$y = x^3$	$y = -x^3$
End Behaviour	Right: VP	Right:	Right: V <i>P</i>	Right:	Right: VP	Right: Down
	Left: Loun (Opensite)	Left: Up	Left: Up	Left: down (same)	Left: Jown	Left: VP
Domain	X EP-	XER	XER	XER	XER	XER
Range	VER	YER	x7 D	0 リン	Mell	y enz
n	I (odd)	1 (odd)	2 (even)	2 (ever)	3 (odd)	3 (odd)
a	a>0	a < 0	a>0	a<0	a>0	a < 0

The End Behaviour of polynomial functions is determined by the leading coefficient ax^n .

$$n \rightarrow \underline{basic shape of}; a \rightarrow \underline{end behaviour}$$

graph; $a \rightarrow \underline{end behaviour}$
(dways look on RIGHTside)

Turning points – generated by the 'middle' terms of a polynomial function.

If the degree is n, the <u>maximum</u> number of turning points is n-1 (but could be <u>fewer</u>).

Example 2: How many turning points are there on this graph? What is the minimum degree of the polynomial?

Example 3: Determine the degree, the end behaviour and the maximum number of turning points of the following polynomial functions.

a) $f(x) = -5x^5 - 3x^4 + \sqrt{7}x^2 - 4$ n = 5 = degree (odd, arrows OPP.) $a = -5 = a < 0 \therefore ends DOWN an right,$ pnax 4 turning pointsAssignment: p. 119 #2-3, 6a-f, 7acegi & p. 127 #1 $g(x) = 2^{-3}x^8 + 5x^6 - \frac{6}{11}x^2 + 9$ n = 8 = degree (even, arrows SANG) $a = 2^{-1} = \frac{1}{8}$ $a > 0 \therefore ends UP on rt$ (up on veft)pnax 7 turning points

Polynomials Day 2: Features of Polynomials II

sety=0

Zero(s) of a Polynomial Function – location(s) where the polynomial function crosses the x-axis a) also called <u>roots</u>, <u>solutions</u> or <u>x-intercepts</u> b) determined by <u>factoring</u> a polynomial expression c) zeros can be <u>real</u> or <u>imaginary</u> (we only deal with real in PC 12)

Example 1: Find all the real zeros of
$$f(x) = x^5 - 16x$$
 factor! G(F? Diff. of Squares?

$$O = x^5 - 16x$$
 Jiff. of sq.

$$O = x (x^4 - 16)$$
 Joesn't factor

$$O = x (x^2 + y)(x^2 - y)$$
 Jiff. of sq.

$$O = x (x^2 + y)(x + 2)(x - 2)$$

$$\int_{x=-2}^{x=-2} \int_{x=+2}^{x=+2} \overline{\chi} = 0, \pm 2$$

A polynomial function of degree *n* has, at most, $\underline{\gamma}$ real zeros.

Remember, the zeros of the polynomial are really just the <u>x-interce</u>pt

Minimum and Maximum number of zeros:

For leading term, ax^n , if *n* is even, may cross the x-axis from 0 to *n* times. E.g. $f(x) = 3x^4 - 16x^3 + 7$ $n = 4 \pmod{2}$ $f(x) = 3x^4 - 16x^3 + 7$ $n = 5 \pmod{2}$ $f(x) = 3x^4 - 16x^3 + 7$ $n = 5 \pmod{2}$ $f(x) = 3x^4 - 16x^3 + 7$ $n = 5 \pmod{2}$ $f(x) = 3x^4 - 16x^3 + 7$ $n = 5 \pmod{2}$ $f(x) = 3x^4 - 16x^4 - 16x^4 + 16x^$

For leading term, ax^n , if *n* is odd, may cross the x-axis from 1 to *n* times. (must cross at least once)

Multiplicity – A polynomial of degree n can have at most n distinct solution. When a solution is repeated r times, the solution has a multiplicity of r.

b) The polynomial of the graph above is shown above. What do you notice about the graph at the different xintercepts when they have different multiplicities?

Ly
$$m=1$$
 "slice" / $cut / line through axis and the existing
Ly $m=2$ "bounce" off axis
Ly $m=3$ "squiggle" through axis
Example 3: Find all the real zeros, and the multiplicity of each zero.
a) $b(x) = -x^3 + 16x + 3x^2 - 48$ Factor by $grouping$ b) $k(x)^6 = -3x^4(x^2 - 4x - 5)$
 $O = -x^3 + 16x + 3x^2 - 48$ Factor by $grouping$ b) $k(x)^6 = -3x^4(x^2 - 4x - 5)$
 $O = -x(x^2 - 16) + 3(x^2 - 16)$
 $O = -x(x^2 - 16) + 3(x^2 - 16)$
 $O = -3(x)^4(x - 5)(x + 1)^1$
 $O = (-x + 3)(x^2 - 16)$
 $f = -1$ diff. of squares
 $O = -(x + 3)'(x + 4)'(x - 4)'$
 $\therefore x = O$ $x = 5$ $x = -1$
with multiplicity $m=1$ $m=1$
 $of + 4$
 $(m= 4)$$

Assignment: p. 120 #4, 9abcehijm (for 9hij use factoring by grouping)

Polynomials Day 3: Graphing Polynomials

Graphing a polynomial function can be summarized using the following steps:

- 1. Plot the y-intercept. (Set x = 0 and solve for y)
- 2. Plot the x-intercepts. (Find the zeros from factoring. These are the x-intercepts.)
- 3. Determine the shape at each <u>x-intercept</u> from the multiplicities. (See below)

Example 2: Sketch:
$$g(x) = (x - a)^3 (x - b)(x - c)^2$$
 where $a < 0 < b < c$
Example 2: Sketch: $g(x) = (x - a)^3 (x - b)(x - c)^2$ where $a < 0 < b < c$
Zorbs: $\therefore x \ge a \times x \ge b \times z \le c$
 $y = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$
 $f(x) = a (x + b) (x + 2)^2 (x - 2) (x - b)$

switch order 🙂

Graphing Polynomials Worksheet &

Assignment: p. 127 #2ab, 3ab, 5ab, 6, 7ab

Polynomials Day 4: Division

Dividing a polynomial function using long division uses the same techniques as long division of numbers.

Synthetic Division

An alternate (and much quicker and easier) method of dividing a polynomial by a binomial is through the use of **synthetic division**. It performs the division without writing variables and reduces the number of calculations.

NOTE: In order to do both synthetic division and long division, all descending <u>powers</u> of the polynomial P(x) must be present. If any power is <u>missing</u> from P(x), consider it as a coefficient of <u>Zeco</u>. (e.g. $0x^2$)

 $\begin{array}{c} \text{ Here the zeros?} \\ \text{Factor!} \\ \text{Example 4: Divide using synthetic division: } (2x^4 - 3x^3 - 7x^2 + 12x - 4) \div (x^2 - 4) \text{ and write final solution in both forms.} \\ (x + 2)(x - 2) \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2 \rightarrow 2ero: +2 \\ \text{zero: -} 2ero: +2 \\ \text{zero: -} 2ero: +2 \\ \text{start with one of them i:} \\ \text{zero: -} 2ero: +2 \\ \text{zero: -} 2ero:$

Example 5: Divide the following using synthetic division.

$$(2x^{3} + 3x^{2} - 5x + 2) \div (2x + 1)$$

$$\frac{1}{2ero: -\frac{1}{2}}$$

$$\frac{1}{2} = \frac{2}{3} - 5 = 2$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{3}$$

$$\frac{1}{2} = \frac{2}{2} - 6 = 5$$

$$(x + \frac{1}{2}) = (2x^{2} + 2x - 6) + 5$$

$$\frac{1}{2x + \frac{1}{2}} = (2x^{2} + 2x - 6) + 5$$

$$\frac{1}{2x + \frac{1}{2}} = \frac{1}{2} =$$

 $(2x^{3}+3x^{2}-5x+2) = (2x+1)(x^{2}+x-3) +5$

Assignment p. 135 #1ac, 2acfhk, 3bcdgh, 4a-d

Polynomials Day 5: Remainder and Factor Theorem

The Factor Theorem

A polynomial P(x) has a factor of x-a if and only if P(a) = 0. In other words, it is a factor if the remainder is <u>ZerD</u>.

then

Example 4: Is
$$x-1$$
 a factor of $P(x) = x^3 - 3x^2 - x + 3$
 $P(x) = x^3 - 3x^2 - x + 7$
 $P(1) = (1)^3 - 3(1)^2 - (1) + 3$
 $= (1 - 3 - 1) + 7$
 $= 0$ // Yes!. It is a factor!

Example 5: Is 2x+1 a factor of $P(x) = 8x^3 + 6x^2 - 9x - 5$ Sub in $x = -\frac{1}{2}$ $P(x) = 8x^3 + 6x^2 - 9x - 5$ $P(-\frac{1}{2}) = 8(-\frac{1}{2})^{3} + 6(-\frac{1}{2})^{2} - 9(-\frac{1}{2}) - 5$ Remainder = P(A) = 0 $= 8\left(-\frac{1}{8}\right) + 6\left(\frac{1}{4}\right) + \frac{9}{7} - 5$: yes! (2x+1) is a factor! $= -1 + \frac{3}{2} + \frac{9}{2} - 5$ -- 6 + 12 = - 6 + 6 = 0 / /

Assignment p. 143 #1, 2abcd, 3abce

Polynomials Day 6: The Rational Root Theorem & Solving Polynomial Equations

The Rational Root Theorem
If
$$f(x) = ax^n + bx^{n-1} + cx^{n-2} + ... + jx + k$$
 is a polynomial function with integer coefficients, every rational
zero of $f(x)$ is of the form $\frac{m}{n}$ where m is the possible factors of k and n is the possible factors of a.
Example 1: List all the possible rational zeros of the polynomial $2x^3 - 3x^2 - 14x + 15$
zeros will be of the form $\frac{m}{n}$ where m is the possible factors of k and n is the possible factors of a.
Example 1: List all the possible rational zeros of the polynomial $2x^3 - 3x^2 - 14x + 15$
zeros will be of the factors of $2x^3 - 3x^2 - 14x + 15$
 $form$ $\frac{m}{n} \rightarrow \frac{\pm 1 \pm 3 \pm 5 \pm 15}{\pm 1 \pm 5 \pm 15}$ $factors of 2x^3 - 3x^2 - 14x + 15$
 $full = \frac{1}{2} + \frac{7}{2} + \frac{5}{2} \pm \frac{15}{2} + \frac{1}{2} \pm \frac{3}{2} \pm \frac{1}{2} \pm \frac$

Example 3: Factor fully $2x^3 - 5x^2 - 4x + 3$

$$-1 \begin{bmatrix} 2 & -5 & -4 & 3 \\ 1 & -2 & 7 & -3 \\ 2 & -7 & 3 & 0 \end{bmatrix}$$

(x+1) (2x² - 7x + 3)
A keep factoring!
=(x+1) (2x - 1) (x - 3)

$$Test x=1 (÷ (x-1))$$

$$2(1)^{7} - 5(1)^{2} - 4(1) + 3$$

$$= 2 - 5 - 4 + 3 = -4 \chi$$

$$Test x=-1 (÷ (x+1))$$

$$2(-1)^{7} - 5(1)^{2} - 4(-1) + 3$$

$$= -2 - 5 + 4 + 3 = 0$$

$$(x - \frac{1}{2})(x - \frac{1}{2})$$

$$2x^{2} - 7x + 3$$

$$(x - \frac{1}{2})(x - \frac{1}{2})$$

$$2x^{2} - 7x + 3$$

$$(x - \frac{1}{2})(x - \frac{1}{2})$$

$$2x^{2} - 7x + 3$$

$$(x - \frac{1}{2})(x - \frac{1}{2})$$

$$(2x - 1)(x - 3)$$

$$(2x - 1)(x - 3)$$

Example 4: Solve
$$0 = (x - 4)(x + 5)(x - 2)$$
 v factored form!
 $x = 4$ $x = -5$ $x = 2$

Example 5: Solve
$$x^3 - 9x^2 + 20x - 12 = 0$$

$$Test x=1 \quad (= (x-1))$$

$$P(1) = (1)^{3} - Q(1)^{2} + 2O(1) - 12$$

$$= 1 - Q + 20 - 12 = 0$$

$$(x-1)(x-2)(x-6) = 0$$

$$\therefore \chi = 1, 2, 6$$

Assignment p. 144 #4a-e, 5ace and Polynomials Supplement