\qquad

Rational Functions

Chapter Notes

Assignment List

Date	Lesson	Assignment
	Features of Rational Functions I	Mickelson Page 188 \#1 \& Page 189 \#4 (find y-intercepts as well)
	Features of Rational Functions II	Mickelson Page 181 \#3
	Features of Rational Functions III	Mickelson Page 180 \#2 Page 182 \#4 Answer 4h) HA: $y=2 \mathrm{VA}: x=-1,4$ hole: $\left(0, \frac{9}{2}\right)$
	Graphing Rational Functions	Mickelson Page 188 \#2, 5, 6
		Practice Test
		Review
		Rational Functions Test

Rational Functions Day 1:

Features of Rational Functions I

Rational Expressions

- a rational expression is a ratio of two polynomial functions.

$$
\frac{g(x)}{h(x)} \quad \text { where } h(x) \neq 0 \quad \text { E.g. } \quad \frac{2 x-5}{3 x^{3}+2 x^{2}-1}
$$

To simplify a single-fraction rational expression we factor the numerator and denominator fully and simplify_ if possible. Keep track of restrictions at each step and state the restrictions as part of your final answer.
$\begin{aligned} & \text { Example 1: } \quad \frac{6-2 m}{m^{2}-9} \leftarrow \text { re-order } \\ & \text { factor (difference of } \\ & \text { squares) }\end{aligned}$
Example 2: $\quad \begin{aligned} & x^{2}+3 x-10 \\ & 2 x^{2}+x-10 \\ & \end{aligned} \begin{gathered}\begin{array}{c}\text { actor } \\ 5 \times-2 \\ 5+2-2 \\ x\end{array} \\ \end{gathered}$

$$
\begin{aligned}
& =\frac{-2 m+6}{(m+3)(m-3)} \in \text { factor (gif) } \\
& =\frac{-2(m-3)}{(m+3)(m-3)}, \begin{array}{l}
\text { State restrictions (the "zeros" } \\
\text { of the } \\
\text { cancel identical } \\
\text { factors to } p
\end{array} \\
& =-2 \quad \text { bottom. }
\end{aligned}
$$

$$
=-\frac{2}{m+3}, m \neq \pm 3
$$

$$
\begin{aligned}
& =\frac{(x+5)(x-2)}{(2 x+5)(x-2)}, \frac{\text { Restrictions: }}{\frac{x \neq \frac{-5}{2}, 2}{\text { cancel }}} \\
& =\frac{x+5}{2 x+5}, x \neq-\frac{5}{2}, 2 \\
& \quad \text { *note: nothing else cancels! }
\end{aligned}
$$

Restrictions

- Restrictions are any values of x that would make the denominator equal to zero. Restrictions are part of the final answer. They also help us describe the Domain of a Rational Function.
- Domain describes all the possible x-values of a function.

Rational Functions

- A rational function is an equation with " x " and " y " (or $f(x)$) that has a rational expression in it. Until we have better techniques, we can graph a rational function using a table of values.
E.g. $\frac{y}{f(x)}=\frac{2 x-5}{3 x^{3}+2 x^{2}-1}$

x - and y - intercepts

- \boldsymbol{x}-intercepts are where the graph crosses the x-axis (where height $=0$, of $y=0$).
- y-intercepts are where the graph crosses the y-axis (where you are "zero over" or $x=0$),

Graphs of Rational Functions

Example 3: a) Create a table of values to graph the following rational function. \sqrt{A} at

b) label any x - and y-intercepts on the graph
no x-int's. y int. at $(0,-5)$
c) List any restrictions: $x \neq 1$
d) what is the Domain? $D_{i}\{x \mid x \neq 1, x \in \mathbb{R}\}$ (x is all real numbers except for 1.)
e) What happens as the x-values get really close to 1 ?
test: $x=0.9 \quad y=\frac{5}{((.9)-1)}=-50$ Big $\# s!\downarrow$ test: $x=1.1 \quad y=\frac{5}{((1-1)-1)}=50 \quad$ Big \#s! 个
f) What happens as we put in really large, positive values for x ?
test: $x=100 \quad y=\frac{5}{(100)-1}=0.05 \mathrm{small}$! Close to zero(but positive)
g) What happens as we put in really large, negative values for x ?
test: $x=-100 \quad y=\frac{5}{(-100)-1}=-0.049 \mathrm{small}$! Close to zero (but negative)

Asymptotes

- An asymptote is a line which the graph approaches but never reaches. We use a dotted line to show them on a graph. (Draw in asymptotes on the graph above)
- Vertical Asympotes (VA) have an equation of the form " $x=\ldots$ "
(Label the vertical asymptote on the graph above)

$$
x=1
$$

- Horizontal Asympotes (HA) have an equation of the form " $y=\ldots$ "
(Label the horizontal asymptote on the graph above)

$$
y=0
$$

Determining \boldsymbol{y}-intercepts Algebraically

1. $\operatorname{Set} x=0$
2. Find y

Hint: remember that $f(x)=y$
Example 4: Find the y-intercepts of the following Rational Functions:
a) $\stackrel{y}{f(x)}=\frac{x^{2}+7 x+10}{x^{2}-4} \quad(\operatorname{set} x=0)$
b) $g(x)=1-\frac{8}{x^{2}-1} \quad(\operatorname{set} x=0)$

$$
y=\frac{\left[(0)^{2}+7(0)+10\right]}{\left[(0)^{2}-4\right]}
$$

$$
y=1-\frac{8}{(0)^{2}-1}
$$

$$
y=1-\frac{8}{-1}
$$

$$
y=\frac{10}{-4} \quad(0,-5 / 2)
$$

$$
y=1+8
$$

$$
y=9
$$

Determining x-intercepts (also called "the zeros") Algebraically

1. Set $y=0 \quad$ Hint: remember that $f(x)=y$
2. Solve for x

To solve a rational equation:

1. Factor everything. State restrictions. Reduce if possible.
2. "Clear denactions tors" (multiply all terms by any factor in a denominator).
3. Solve the resulting equation. $\quad \rightarrow$ terms are separated by add/subtract $1=$

Example 5: Find the x-intercepts of the following Rational Functions:

$$
\begin{aligned}
& \text { (set }=0 \text {) } \\
& \text { a) } f(x)^{>0}=\frac{x^{2}+7 x+10}{x^{2}-4} \quad \text { factor! } \\
& 0=\frac{(x+5)(x+2)}{(x+2)(x-2)}, \frac{\text { Restrictions }}{x \neq \pm 2} \\
& (x-2) \cdot 0=\frac{(x+5)}{(x-2)} \cdot(x-2) \\
& \text { Clear } \\
& \text { fractions } \\
& \text { b) } g(x)^{\circ}=1-\frac{8}{x^{2}-1} \quad \text { factor } \\
& 0=1-\frac{8}{(x+1)(x-1)}, \frac{\text { Restrictions: }}{\frac{x \neq \pm 1}{\text { Nothing Cancels. }} .} \\
& 0^{(x+10(x-1)}=1^{(x+1)(x-1)}-\frac{8(x+1)(x-1)}{(x+1)(x-1)} \quad \text { clear fractions } \\
& \underset{-5}{0}=\begin{array}{r}
x+5 \\
-5
\end{array} \\
& \text { solve } \\
& -5=x \\
& \begin{aligned}
& 0=(x+1)(x-1)-8 \\
& 0=x^{2}-1-8 \\
& 0=x^{2}-9 \\
& 0=(x+3)(x-3) \\
& \therefore x= \pm 3 \\
& \quad x \text { ins: } \quad(-3,0) \text { and }(3,0)
\end{aligned} \\
& 0=(x+3)(x-3) \quad \text { Factor to } \quad \text { solve quadratic } \\
& x \text {-int: }(-5,0)
\end{aligned}
$$

Assignment: Page 188 \#1, \#4 (\#4 asks for "zeros" which are x-intercepts. Find y-intercepts as well)

Rational Functions Day 2:

Features of Rational Functions II

Warm-up: Label any intercepts and asymptotes on the following graph. (Approximate if needed)
x-intercept(s): $(-3,0)(3,0)$
y-intercept: $\quad(0,4.5)$
approx.
$? \circledast$
HA: $y=1$
VA: $\quad x=-1, x=2$
Domain: $\{x \mid x \neq-1,2, x \in \mathbb{R}\}$

Example 1: The equation of the graph above is $f(x)=\frac{x^{2}-9}{x^{2}-x-2}$.
a) Factor and simplify. State restrictions.

$$
f(x)=\frac{(x+3)(x-3)}{(x+1)(x-2)}, x \neq-1,2
$$

b) What do you notice about the restrictions and the asymptotes? The same!

Except the restrictions and Domain are $x \neq-1,2$
and the asymptotes are at $x=-1,2$

Determining the Vertical Asymptotes Algebraically

- The vertical asymptotes are created by restrictions from the denominator (after simplifying)
- For rational function, $f(x)=\frac{g(x)}{h(x)}$, if \mathbf{c} is a zero of $h(x)$, then the vertical line $x=c$, is a vertical asymptote of $f(x)$.

Example 2: Determine the vertical asymptotes of $f(x)=\frac{2 x-5}{x^{3}-9 x^{2}} \quad \begin{aligned} & \text { factor } \\ & \text { restrictions }\end{aligned}$

$$
f(x)=\frac{2 x-5}{(x)^{2}(x-9)}, x \neq 0,9 \quad \begin{aligned}
& \text { va at restrictions (that dont } \\
& x A=a t \\
& x=0,9
\end{aligned}
$$

Determining Horizontal Asymptotes Algebraically

- Horizontal asymptotes can be determined by examining the end behaviour of a rational function as x approaches positive and negative \qquad (gets really big or really small).
τ "big negative"
- To examine the end behaviour, divide each term in the rational expression by the highest power of x and allow $|x| \rightarrow \infty$. This allows all but the leading terms) to become zero and disappear. anywhere! imagine really big x-values

Think: $\frac{1}{B 1 G}=$ small
Caution: Constants beyond the rational function get added to the value of the horizontal asymptote.

Example 3: Determine the horizontal asymptotes of

$$
\begin{aligned}
& \text { i) } f(x)=\frac{2 x-5}{x^{3}-9 x^{2}}+3 \\
& \text { ii) } g(x)=\frac{6 x^{2}+2 x-1}{4 x^{2}-9 x+7} \\
& \text { iii) } h(x)=\frac{3 x^{2}-1}{9 x+4}-3 \\
& y=\frac{\frac{3 x^{2}}{x^{2}}-\frac{1}{x^{2}}}{\frac{9 x}{x^{2}}+\frac{4}{x^{2}}}-3 \\
& y=\frac{3-\frac{x^{2}}{x^{2}}}{\frac{97^{0}}{x}+\frac{4 x^{2}}{x^{2}}}-3 \\
& y=\frac{0-0}{1-0}+3=\frac{0}{1}+3 \\
& \text { Shortcut! } \\
& \text { For Horizontal Asymptotes: } \\
& y=\frac{\frac{6 x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{1}{x^{2}}}{\frac{4 x^{2}}{x^{2}}-\frac{9 x}{x^{2}}+\frac{7}{x^{2}}} \\
& y=\frac{\frac{2^{2}}{x^{2}}-\frac{2^{2}}{x^{3}}}{1-\frac{a}{x}}+3\left\{\begin{array}{c}
\text { as x gets } \\
\text { really big, } \\
\frac{1}{x} \rightarrow 0
\end{array}\right\} y=\frac{6+\frac{2}{x}-\frac{1}{x^{2}}}{4-\frac{a}{x}+\frac{7}{x}} \\
& y=\frac{\frac{2 x}{x^{3}}-\frac{5}{x^{3}}}{\frac{x^{3}}{x^{3}}-\frac{9 x^{2}}{x^{3}}}+3 \\
& y=\frac{3}{0}-3 \\
& \therefore \text { no H.A. } \\
& \text { For } f(x)=\frac{g(x)}{h(x)}=\frac{a_{n} x^{n}+\cdots+a_{1}+a_{0}}{b_{d} x^{d}+\cdots+b_{1}+b_{0}} \text { where } a_{n} \neq 0, \quad b_{d} \neq 0
\end{aligned}
$$

1. If $\boldsymbol{n}<\boldsymbol{d}$, the line $\boldsymbol{y}=\mathbf{0}$ (the x-axis) is a horizontal asymptote. (highest power is in denom-)
"tied" \rightarrow 2. If $\boldsymbol{n}=\boldsymbol{d}$, the line $\boldsymbol{y}=\frac{a}{b}$ is a horizontal asymptote. (highest power is found in mum-\& den.) coefficients
2. If $\boldsymbol{n}>\boldsymbol{d}$, there is no horizontal asymptote. (highest power is in numerator)

Rational Functions Day 3:
 Features of Rational Functions III

Discontinuity

- Rational functions are undefined when there is a value of x that causes division by zero. This causes a discontinuity or "break" of some kind in the graph.
- Vertical Asymptotes are a type of discontinuity we have already seen.

- Holes are another type of discontinuity.

Holes in Rational Functions

- A hole in a rational function is created when the factored form of a rational function simplifies by cancelling common factors. But because the restricted value still exists, a hole in the function is created at that x-value.
- To find the coordinate of the hole, sub the restricted value (that cancelled away) into the simplified equation to find y.

Example 1: Consider $f(x)=\frac{x+2}{x^{2}+x-2}$. The graph is shown below.
a) Simplify the function and state restrictions.

$$
\begin{aligned}
& f(x)=\frac{(x+2)}{(x+2)(x-1)}, x \neq-2,1 \\
& f(x)=\frac{1}{x-1}, x \neq-2,1
\end{aligned}
$$

b) Explain why there is an asymptote at $x=1$ and a hole at $x=-2$.

- The factor $(x-1)$ is still in the simpler function, and creates $a \sqrt[V]{ } A$.

- The factor $(x+2)$ cancelled, but $x \neq-2$ is still a restriction.
c) Sub $x=-2$ into the simplified version of $f(x)$ to find the coordinate of the hole:
hole at $(-2,-1 / 3)$

Features of Rational Functions
Now we are able to find all the key features of a rational function. Next day we can graph them!

Example 2: Determine the vertical \& horizontal asymptotes, $x \& y$ intercepts, and any holes in the function

$$
f(x)=\frac{x^{2}-5 x}{x^{3}-25 x}-2
$$

denom. has highest power: Simplify:

$$
\begin{aligned}
& y=\frac{x^{2}-5 x}{x^{3}-25 x}-2 \text { factor } \\
& y=\frac{x(x-5)}{x\left(x^{2}-25\right)}-2 \\
& y=\frac{x(x-5)}{x(x+5)(x-5)}-2, x \neq 0,-5,5 \\
& \downarrow \quad \downarrow \text { vole va hole }
\end{aligned}
$$

Simplified
Equation
(use for the

$$
y=\frac{1}{x+5}-2, \quad x \neq 0,-5,5
$$ other work)

VA
$v A$ at $x=-5$
y-int
$\operatorname{set} x=0$
$!$ but $x \neq 0$
\therefore no y-int

Holes sub in $x=0$ and $x=5$ into simplified erin

$$
\begin{array}{ll}
y=\frac{1}{(0)+5}-2 & y=\frac{1}{(5)+5}-2 \\
y=\frac{1}{5}-2 & y=\frac{1}{10}-2 \\
y=\frac{1}{5}-\frac{10}{5} & y=\frac{1}{10}-\frac{20}{10} \\
y=-\frac{9}{5} & y=-19 / 10 \\
\text { hole at } & y=\text { hole at } \\
(0,-9 / 5) & (5,-19 / 10)
\end{array}
$$

x-int

$$
\begin{aligned}
& \text { Set } y=0 \text { (use simplified!) } \\
& 0=\frac{1}{x+5}-2 \\
& \text { clearfraction } \\
& O(x+5)=\frac{1(x+5)}{(x+5)}-2(x+5) \\
& 0=(-2(x+5) \quad \text { Expand } \\
& \begin{array}{ll}
0=1-2(x+5) & \text { collect }
\end{array} \quad(-9 / 2,0) \\
& \text { Solve } \\
& \frac{a}{-2}=\frac{-2 x}{-2} \\
& \frac{-9}{2}=x \\
& x-\text { int: } \\
& (-9 / 2,0)
\end{aligned}
$$

Example 3: Determine the vertical \& horizontal asymptotes, $x \& y$ intercepts, and any holes in the function

$$
f(x)=\frac{9 x-x^{3}}{2 x^{3}-3 x^{2}-9 x} \quad \text { HA } \quad \therefore \text { use coefficients! } \frac{-1 x^{3}}{2 x^{3}}
$$

Simplify:

$$
\begin{aligned}
& y= \frac{-x\left(x^{2}-9\right)}{x\left(2 x^{2}-3 x-9\right)} \\
& y= \frac{-x(x+3)(x-3)}{x(2 x+3)(x-3)}, \quad x \neq 0,-\frac{3}{2}, 3 \\
& \text { hole VA hole }
\end{aligned}
$$

Simplified

$$
y=\frac{-(x+3)}{(2 x+3)}, x \neq 0,-3 / 2,3
$$

$V A$ VA at $x=-\frac{3}{2}$
y-int (set $x=0$, but $x \neq 0!$)

$$
\therefore \text { noy-int }
$$

Holes at $x=0$ and $x=3$
x-int $(\operatorname{set} y=0)$

$$
\begin{array}{ll}
y=\frac{-(0+3)}{(2(0)+3)} ; & y=\frac{-(3+3)}{2(3)+3} \\
y=\frac{-(3)}{3} ; & y=\frac{-6}{(6+3)} \\
y=-1 ; & y=\frac{-6}{9} \\
\text { Hole at }(0,-1) ; & y=-\frac{2}{3}
\end{array}
$$

Hole at $(3,-2 / 3)$

$$
\begin{aligned}
& 0=\frac{-(x+3)}{(2 x+3)} \quad \text { clear fractions } \\
& 0 \stackrel{(2 x+3)}{=} \frac{-(x+3)(2 x+3)}{(2 x+3)} \\
& 0=-(x+3)
\end{aligned} \begin{array}{ll}
0=-3 & \text { car expand, } \\
x=\text { use the } \\
\text { "zero of the } \\
\text { bracket!" }
\end{array}
$$

Assignment: Page 180 \#2, Page 182 \#4
Answer 4h) HA: $y=2$ VA: $x=-1,4$ hole: $\left(0, \frac{9}{2}\right)$

Rational Functions Day 4:
Graphing Rational Functions

Now that we know how find all the key features of a rational function, we can use them to graph!

Key Ideas:

- Restrictions
- Asymptotes
- Intercepts
- Holes

Sometimes, when we simplify a function, it turns into something we know how to graph already. Just watch out for restrictions!

Example 1: Sketch an
Simplify: \&actor

$$
y=\frac{(x+3)(x-3)}{(x+3)}, \frac{\begin{array}{|c|}
x \neq-3 \\
\text { hole }
\end{array} \overbrace{\text { novA }}}{\substack{ \\
\text { no VA }}}
$$

$$
y=x-3 \quad, x \neq-3
$$

- this is a line! $y=m x+b$

$$
y=x-3
$$

ヶ ャ $b=-3$

- except aline with

$$
m=1
$$

plot points
on line:
y-int at -3
uplotl
x-int: $(3,0)$
y-int: $(0,-3)$
(from graph)

Steps to Graphing a Rational Function:

1. Find and plot any Horizontal Asymptotes (before you simplify)
2. Simplify the function* (factor, restrictions, cancel - note Holes/VA)
*Note: You may be able to sketch the graph of the function in its simplified form if you know it (e.g. a line). If not....
Use the simplified function to find all of the following:
3. Find and plot any Vertical Asymptotes
4. Find and plot \boldsymbol{y}-intercept (set $x=0$ and find y) and \boldsymbol{x}-intercepts (set $y=0$ and solve for x)
5. Find the y-coordinates of any holes (sub x-value of hole into simplified function) and plot holes
6. You may need to use a table of values to include
a. $\quad x=0.1$ or 0.01 above and below each vertical asymptote (to see how it approaches)
b. $x= \pm 1000(\pm \infty)$ (to see end behaviour)
c. any other helpful points
7. Draw a smooth curve through the points, and "approach" the asymptotes

highest powers "tied". use coeff.
Example 3: Sketch an accurate graph of $f(x)=\frac{\mid x^{2}+5 x+6}{\mid x^{2}-9} . H A$ $y=\frac{1}{1}$ HA at $y=1$
Simplify: $y=\frac{(x+2)(x+3)}{(x+3)(x-3)}, \underset{\text { hole VA }}{x \neq-3,3} \quad$ VA \quad VA at $x=3$
$\operatorname{Simplified}_{E q^{\prime} n:} \quad y=\frac{(x+2)}{(x-3)}, x \neq-3,3$
y-int: set $x=0$

$$
\begin{aligned}
& y=\frac{(0+2)}{(0-3)} \\
& y=\frac{2}{-3} \\
& y=-2 / 3
\end{aligned}
$$

y int at $(0,-2 / 3)$
hole sub $x=-3$
into simpler eq'.

$$
\begin{aligned}
& y=\frac{((-3)+2)}{((-3)-3)} \\
& y=\frac{-1}{-6} \\
& y=\frac{1}{6} \quad \therefore \text { hole at }(-3,1 / 6)
\end{aligned}
$$

* dian curve as though it is going"through" the hole, but just leave the hole out!
x-int: set $y=0$

$$
\begin{aligned}
(x-3) 0 & =\frac{(x+2)}{(x-3)}(x-3) \\
0 & =(x+2) \\
x & =-2
\end{aligned}
$$

other Points What's happening right of $V A$?
try $x=4$

$$
y=\frac{(4+2)}{(4-3)}=\frac{6}{1}=6 \quad \operatorname{plot}(4,6)
$$

try $x=5$

$$
y=\frac{(5+2)}{(5-3)}=\frac{7}{2}=3.5 \quad \operatorname{plot}(5,3.5)
$$

try $x=6$

$$
\frac{\operatorname{try} x=6}{y=\frac{(6+2)}{(6-3)}}=\frac{8}{3}=2 . \overline{6} \quad \operatorname{Plot}(6,2.7)
$$

Draw curves; follow asymptotes.

Example 4: Sketch an accurate graph of $f(x)=\frac{2 x}{x^{2}-4}$.

Simplify: $y=\frac{2 x}{(x+2)(x-2)},$| $\frac{x \neq-2,2}{9} \quad 4$ |
| :---: |
| $V A$ VA |

y-int: set $x=0$

$$
\begin{aligned}
& y=\frac{2(0)}{(0+2)(0-2)} \\
& y=0
\end{aligned}
$$

x-int: $\operatorname{set} y=0$

$$
\begin{aligned}
(x+2)(x-2) & =\frac{2 x(x+2)(x-2)}{(x+2)(x-2)} x \operatorname{int}(0,0) \\
\frac{0}{2} & =\frac{2 x}{2} \\
0 & =x
\end{aligned}
$$

Extra Points Need to know what's happening in each "section"

HA HA at $y=0$

* Note: graphs can cross HA's in the middle. They only apply at the "ends".

VA VA's at $x=-2, x=2$
holes no holes

