Sequences and Series

Chapter Notes

Assignment List

Date	Lesson	Assignment
	Geometric Sequences	Mickelson Page 22 \#1a-h, 2a-e, 3ab, 4acefghi, 13-16 (extension: complete all of \#1-4)
	Geometric Series	Mickelson Page 28 \#1 (omit h), 7-8, 12-14, 16, 19
	Infinite Geometric Series	Mickelson Page 35 \#1, 2, 4, 12, 15, 16, 20
	Sigma Notation	 Mickelson Page 35 \#3
		Practice Test
		Review

Sequences and Series Day 1: Geometric Sequences

What is a sequence?

A sequence is simply an ordered list of numbers (called terms) that follow a pattern so that the next term can be determined.
The first term in the sequence is labeled a (or $\left.t_{1}\right)$
The number of terms in the sequence is n
Any term of the sequence is $\boldsymbol{t}_{\boldsymbol{n}}(\operatorname{read} t \operatorname{sub} n)$, dependent on the value of \boldsymbol{n}. For example, the third term is \underline{t}_{3}, the eighth term is ${\underline{t_{8}}}_{8}$, etc.
A finite_ sequence has a finite number of terms whereas an infinite sequence has an infinite number of terms

A geometric sequence is a sequence in which the ratio of consecutive terms is constant.

Suppose you have the sequence $4,12,36,108$,
a) What is a ?

$$
a=4
$$

b) What do you multiply by to get the next term (this is the r value)?

$$
r=3
$$

c) Is the sequence geometric (see the definition above)? In other words, is the \boldsymbol{r} value consistent throughout the sequence?

$$
\text { Yes! } r \text { is always } 3 .
$$

d) What is t_{5} ? Explain how you got t_{5}. Write a general formula for this.

$$
t_{5}=108 \times 3=324 \quad / \quad t_{5}=t_{4} \times r
$$

e) Show how to get t_{5} using only a and r.

$$
t_{5}=a r^{4}
$$

f) Show how to get t_{8} using only a and r.

$$
t_{8}=a r^{7}
$$

g) What do you notice about the exponent on r compared to n ? The exponent is one less than the term number.
h) Write a general formula for t_{n} for any geometric sequence:

$$
t_{n}=a r^{n-1}
$$

The general term of a geometric sequence where n is a positive integer is:

$$
t_{n}=a r^{n-1}
$$

For any integer $n \geq 1$
where a is the first term, n is the number of terms, r is the common ratio, and t_{n} is a general term

For a geometric sequence, the (mon ratio (r), can be found by taking any term (except the first) and dividing that term by the preceding term. So $r=\frac{t_{n}}{t_{n-1}} \longleftarrow \operatorname{any}^{\leftarrow} \mathrm{an}^{\text {term }}$ the term before
Example 1: Are the following sequences geometric (i.e. Is the r value consistent)?

a) $2,4,6,8$
\therefore not
b) $4,10,25,62.5$

$$
\stackrel{r}{r}=\underbrace{\frac{4}{2}=2}_{\text {not }} \stackrel{?}{r}=\frac{6}{4}=1.5
$$

$$
r=\frac{10}{4}=2.5 / r=\frac{25}{10}=2.5 / r=\frac{62.5}{25}=2.5
$$

(same)
Example 2: In a geometric sequence, the second term is 28 and the fifth term is 1792. Determine the values of a and r, and list the first three terms of the sequence.

Applications
If a question involves percent growth, r must be greater than 1 .
E.g. If there is 30% growth each year, what is the r value for the problem?

$$
30 \%+100 \%=130 \%
$$

If a question involves a percent reduction, r must be less than 1 and must represent the percent remaining (not the percent lost).

If you reduce the size of your savings by 25% per year, what is \boldsymbol{r} ?

$$
r=0.75
$$

$$
1007-257=757
$$

If you increase an image by 10%, what is r ?

$$
100 \%+10 \%=110 \%
$$

$$
r=1.1
$$

$$
r=2
$$

Example 3: Bacteria reproduce by splitting into two. Suppose there were three bacteria
$a=3$ originally present in a sample. How many bacteria will there be after 8 generations?

$$
\begin{array}{r}
a=3 \\
r=2 \\
n=8
\end{array}
$$

Example 4: Suppose a photocopier can reduce a picture to 60% of its original size. If the picture is originally 42 cm long, what length will it be after five successive reductions? $r=0.60$

$$
a=42
$$

(reed? remaining)

1 reduction ${ }^{2}$
The length will be 3.27 cm .

$$
\begin{aligned}
t_{n} & =a r^{n-1} \\
& =42(0.6)^{6-1} \\
& =42(0.6)^{5} \text { reduction } \\
& =3.26592 \\
t_{6} & =3.27 \mathrm{~cm}
\end{aligned}
$$

Assignment p. 22 \#1a-h, 2a-e, Sab, 4acefghi, 13-16 (extension: complete all of \#1-4)

Sequences and Series Day 2: Geometric Series
Geometric Series: The SUm of a geometric sequence.

One example of a geometric series is a phone tree. Suppose the school band had to share information that they didn't want public, so they used a phone tree. Draw the first four levels of the tree below:

What pattern has developed?

$$
1+2+4+8+\cdots
$$

What is the common ratio of the sequence?

$$
r=2
$$

The sum of a geometric series can be determined using the formula

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)}, r \neq 1
$$

where a is the first term, n is the number of terms, r is the common ratio, t_{n} is the last term, and S_{n} is the sum of the first n terms
in total \rightarrow sum
number
Use the formulas) to find the of people reached in the school band after 7 layers of the
phone tree:

$$
\begin{aligned}
& a=1 \\
& r=2 \\
& n=7
\end{aligned}
$$

$$
\begin{aligned}
& 1+2+4+8+\ldots \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)} \\
& S_{n}=\frac{1\left(2^{7}-1\right)}{(2-1)} \\
&=\frac{1(128-1)}{1}
\end{aligned}
$$

a) $5+15+45+\ldots$
x
b) $a=64, r=\frac{1}{4}$
a) $5,15,45, \ldots$
b) $64+16,4,+\ldots$
$a=5$
$r=3$
$n=8$

$$
\begin{aligned}
S_{n} & =\frac{a\left(r^{r}-1\right)}{(r-1)} \\
& =\frac{5\left(3^{8}-1\right)}{(3-1)} \\
& =\frac{5(6561-1)}{2} \\
& =5\left(\frac{6560)}{2}\right. \\
S_{8} & =16400
\end{aligned}
$$

Example 2: Determine the sum of the following geometric series.
a)

$$
\begin{aligned}
& r=\frac{t_{n} \text { (ard term) }}{t_{n-1}} \text { (term before) } \\
& =\frac{1 / 4}{1 / 16}=\frac{1}{4} \times \frac{16}{1}=4 \\
& a=\frac{1}{64} \\
& r=4 \\
& S_{n}=\frac{\left.r t_{n}-a\right)}{(r-1)} \\
& t_{n}=1024 \\
& =\frac{\left[(4)(1024)-\frac{1}{64}\right]}{(4-1)} \\
& S_{n}=1365.328 \\
& \text { a) } \frac{1}{64}+\frac{1}{16}+\frac{1}{4}+\cdots+1024 \\
& \text { b) }-2+4-8+\cdots-8192
\end{aligned}
$$

$$
\begin{aligned}
& t_{n} \\
& \\
&(-2)+4+(-8)+\cdots+(-8192) \\
& a=-2 \\
& r=-2 \\
& t_{n}=-8192 \\
& S_{n}=\frac{\left(r t_{n}-a\right)}{(r-1)} \\
&=\frac{((-2)(-8192)-(-2)]}{(-2-1)} \\
& S_{n}=-5462
\end{aligned}
$$

Example 3: A two-player scrabble tournament with 512 players is held. When a player loses, he/she is eliminated. The winners continue to play until a final match determines the champion. What is the total number of matches that will be played in the tournament?

$$
\begin{aligned}
& a=256 \\
& r=0.5 \\
& t_{n}=1
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{\left(r t_{n}-a\right)}{(r-1)} \\
& =\frac{((0.5)(1)-256)}{(0.5-1)}
\end{aligned}
$$

511 matches will be played in total.

Example 4: If a person received an 8% salary increase each year and earned a six -year total of $S_{n} \$ 146718.58$ by the end of the 6 th year, determine the starting salary.

$$
\begin{aligned}
& a=? \\
& S_{n}=146718.58 \\
& r=1.08 \\
& n=6
\end{aligned}
$$

$$
\begin{gathered}
S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)} \\
146718.58=\frac{a\left(1.08^{6}-1\right)}{(1.08-1)} \\
\frac{146718.58 \times(1.08-1)}{\left(1.08^{6}-1\right)}=a\left(1.08^{6}-1\right) \\
19999.9999=a
\end{gathered}
$$

The starting salary was

Assignment p. 28 \#1 (omit h), 7-8, 12-14, 16, 19

$$
100 \%+8 \%=108 \% \quad \text { sun }
$$

$$
20000=a
$$

-

Units
Money: round to nearest 2 decimal places

Sequences and Series Day 3: Infinite Geometric Series

An infinite geometric series is a geometric series that... Continues forever... \therefore it does not have a final term

$$
\times 2 \times 2
$$

\#1) Consider the infinite geometric series $\mathbf{1 + 2 + 4 + 8 + 1 6 + \ldots \text { What would the sum be? }}$

$$
\begin{array}{ll}
S_{1}=1 & S_{5}=31 \\
S_{2}=3 & S_{6}=63 \\
S_{3}=7 & S_{7}=127 \\
S_{4}=15 &
\end{array}
$$

$$
\begin{aligned}
& \text { Sum gets infinitely } \\
& \text { large! } \quad S_{\infty}=\infty
\end{aligned}
$$

divergent"
\#2) Consider the infinite geometric series that has $a=4$ and $r=\frac{1}{2}$. Write the series up to 13 terms and find the sum for $S_{5}, S_{7}, S_{9}, S_{11}, \& S_{13}$.

$$
\begin{array}{ll}
S_{1}=4 & S_{5}=7.75 \\
S_{2}=6 & S_{6}=7.875 \\
S_{3}=7 & S_{7}=7.9375 \\
S_{4}=7.5 & S_{8}=7.96875
\end{array}
$$

$$
\begin{array}{ll}
S_{2}=6 & S_{6}=7.875 \\
S_{3}=7 & S_{7}=7.9375 \\
S_{4}=7.5 & S_{8}=7.96875
\end{array}
$$

Convergent When the sum approaches a fixed value, the series is said to be Convergent. When this is the case, r must be between -1 and $1 . \quad|r|<1$ "little "r" e.g. $\frac{1}{2},-0.4, \ldots$
Divergent If, in an infinite series, each term continues to grow, the sum does not approach a fixed value. It actually approaches_infinity_ or negative infinity. In these situations, r is less than 4 or greater than 1 . The infinite series is said to be Divergent.

$$
|r|>1 \quad \text { "big" e.g. 2, 3, 4, }-2,-3,1.2,-1.5
$$

For infinite series that are convergent, the formula for finding the sum that the series converges to is $\boldsymbol{S}_{\infty}=\frac{\boldsymbol{a}}{(\mathbf{1 - r})}$
where a is the first term, r is the common ratio, and S_{∞} is the sum of an infinite number of terms.

$$
S_{\infty}=\frac{a}{(1-r)}
$$

Use the formula to find the sum of the infinite series from $\# 2$ above: $\quad 4+2+1+\frac{1}{2}+\cdots$

$$
a=4
$$

\qquad

$$
r=\frac{1}{2}
$$

$$
=\frac{4}{\left(1-\frac{1}{2}\right)}=\frac{4}{1 / 2}=4 \times \frac{2}{1}=8
$$

Example 1: Determine whether each infinite geometric series converges or diverges. Calculate the sum.
a)

$$
4+(-8)+16+(-32)
$$

$\overbrace{1}^{x \frac{1}{5}}$
b) $a=4$

$$
r=-2
$$

Divergent

Example 2: Express the repeating decimal $2 . \overline{37}$ as a rational number in the form $\frac{m}{n}$.

Example 3: The first term of an infinite geometric series is 12, and the sum is 48. Determine \boldsymbol{r}.

$$
\begin{array}{ll}
S_{\infty}=48 \\
a=12 \\
r=? ? ?
\end{array} \quad S_{\infty}=\frac{a}{(1-r)} \quad(1-1) 48=\frac{12}{(1-r)} \quad(1-1) \quad \begin{aligned}
\frac{-48 r}{-48}=\frac{-36}{-48} \\
r=\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
& 2 . \overline{37}=2.37373737 \ldots \\
& =2+\underline{0.37}+0.0037+\cdots \text { geometric } a=\frac{37}{100} \\
& \left.=2+\frac{37}{100}+\frac{37}{10000}+\cdots\right\} \text { germs! } r=\frac{1}{100} \\
& \left.\begin{array}{l}
=2+\left(\frac{37 / 100}{1-1 / 100}\right) \\
=2+\left(\frac{37 / 100}{99 / 100}\right) \\
=2+\frac{37}{100} \times \frac{100}{99}
\end{array} \quad=2+\frac{37}{99} \rightarrow \frac{198}{99}+\frac{37}{99}=\frac{235}{99}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a=1 \\
& r=1 / 5 \\
& S_{\infty}=\frac{1}{(1-1 / 5)} \\
& =\frac{1}{4 / 5}=\frac{5}{4} \text { or } 1.25 \text { (convergent) } \\
& \text { b) } \\
& \text { a) } 1+\frac{1}{5}+\frac{1}{25}+\cdots \\
& \text { b) } 4-8+16-32+\cdots \\
& \times(-2)
\end{aligned}
$$

$$
r=\frac{2}{3}
$$

Example $丩$: A ball is dropped from 12 ft and rebound two-thirds the distance from which it fell. Find (a) the total vertical distance travelled by the ball upon hitting the floor the fourth time and (b) the total distance the ball travelled before coming to a rest.

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)}
$$

$$
\begin{aligned}
& a=8 \\
& r=2 / 3 \\
& n=3
\end{aligned}
$$

$$
\begin{aligned}
\text { Sum } & =\underline{12}+2\left(s_{n}\right) \\
& =12+2\left(\frac{8\left(\left(\frac{2}{3}\right)^{3}-1\right)}{\left(\frac{2}{3}-1\right)}\right) \\
& =12+2(16 . \overline{8})^{2} \\
\begin{array}{c}
\text { Total } \\
\text { dist }
\end{array} & =45 . \overline{\mathrm{ft}}
\end{aligned}
$$

$$
\begin{aligned}
& a=8 \\
& r=2 / 3
\end{aligned}
$$

$$
\left.{ }^{b}\right)_{S_{T}}=12+2\left(S_{\infty}\right)
$$

$$
=12+2\left(\frac{8}{(1-2 / 3)}\right)
$$

$$
=12+2\left(\frac{8}{1 / 3}\right)
$$

$$
=12+2(24)
$$

$$
\text { Total }=60 \mathrm{ft}
$$

Assignment p. 35\#1, 2, 4, 12, 15, 16, 20

Sequences and Series Day 4: Sigma Notation the
Often in math we require that \qquad sum of many variables. Summation or sigma notation is a convenient and simple form of shorthand used to give a concise expression for a sum of the values of a variable.

$$
\begin{aligned}
& x_{1}^{2} t_{2} t_{3} t_{4} t_{5} t_{6}
\end{aligned}
$$

For example, the geometric sequence with 6 terms $1+2+4+8+16+32$ has a general term:

$$
a=1 \quad r=2 \quad n=6
$$

$$
t_{n}=a r^{n-1} \quad t_{n}=1(2)^{n-1} \quad t_{k}=2^{k-1}
$$

Each term can be represented as $t_{1}=1(2)^{1-1} \quad t_{2}=1(2)^{2-1} \quad t_{3}=1(2)^{3-1}$

$$
t_{4}=1(2)^{4-1} \quad t_{5}=1(2)^{5-1} \quad t_{6}=1(2)^{6-1}
$$

The series is the sum of all these terms. This is abbreviated to:

$$
\begin{aligned}
& \text { "Let } k \text { "run" }{ }^{\text {Prom } 1} \text { to 6" "sur" }\left\{\sum_{k=1}^{6} 2^{k-1}\right\} \text { general term } \\
& (\text { wont } 1,2,3,4,5,6)
\end{aligned}
$$

The symbol \sum is the Greek letter sigma. When \sum is shown, it is called sigma notation.
general form for any term
Example 1: Write the series corresponding to $\sum_{k=1}^{3}\left(k^{2}+2 k+5\right)=8+13+20=41$
$t_{1}=(1)^{2}+2(1)+5=8$

$$
\begin{aligned}
& k=1 \quad t_{1}=(1)^{2}+2(1)+5=8 \\
& k=2 \quad t_{2}=(2)^{2}+2(2)+5=13 \\
& k=3 \quad t_{3}=(3)^{2}+2(3)+5=20
\end{aligned}
$$

Example 2: Find the sum of the geometric series $\sum_{k=1}^{10} 3(-2)^{k-1}=3+(-6)+12+\ldots$

$$
\begin{aligned}
& k=1 \quad t_{1}=3(-2)^{1-1}=3 \\
& k=2 t_{2}=3(-2)^{2-1}=-6
\end{aligned}
$$

$$
r=-2
$$

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)}
$$

$$
n=10
$$

$$
=\frac{3\left[(-2)^{10}-1\right]}{-2-1}
$$

$$
S_{10}=-1023
$$

$$
\sum_{k=1}^{n} t_{k} \quad\left[\begin{array}{ll}
t_{k}=a r^{k-1} & a=6 \\
t_{1} t_{2} t_{3} t_{4} t_{5}
\end{array} \quad \begin{array}{l}
\text { (3 }
\end{array}\right.
$$

Example 3: Write the geometric series $6+18+54+162+486$ using sigma notation with index $k=1$

Example 4: Find the number of terms in each finite series:
a) $\sum_{k=5}^{17}\left(2^{k}+4\right)$

$$
n=17-5+1
$$

$$
n=13
$$

$\sum_{k=a}^{b}$

$$
n=b-a+1
$$

$$
\begin{aligned}
& n=100-0+1 \\
& n=101
\end{aligned}
$$

Example 5: Find the sum of the infinite series:

$$
\begin{aligned}
& S_{\infty}= \\
& +\left(-\frac{1}{81}\right)
\end{aligned}
$$

($k=1$

$$
k=2
$$

$$
t_{2}=(-1)^{2}\left(\frac{1}{3}\right)^{(2+1)}=(1)\left(\frac{1}{3}\right)^{3}=\frac{1}{27}
$$

$$
\begin{aligned}
& a=-\frac{1}{9} \\
& r=-\frac{1}{3} \\
& (V|n|<1 \\
& \text { (ir is little) }
\end{aligned}
$$

$$
k=3
$$

$$
=(-1)^{3}\left(\frac{1}{3}\right)^{(3+1)}=(-1)\left(\frac{1}{3}\right)^{4}=-\frac{1}{81}
$$

$$
\begin{aligned}
S_{\infty} & =\frac{\left(-\frac{1}{9}\right)}{-\left(-\frac{1}{3}\right)} \\
& =\frac{-1 / 9}{4 / 3} \\
& =-\frac{1}{9} \times \frac{3}{4} \\
& =-\frac{1}{12}=0.08 \overline{3}
\end{aligned}
$$

Assignment p. 28 \#2-4, p35 \#3

