Transformations Chapter Notes Hey

Assignment List

Date	Lesson	Assignment
	1. Basic Graphs	Memorize basic graphs (there will be a quiz on these) &
	2. Functions and Relations	Mickelson Page 53 #1-3
	3. Vertical and Horizontal Translations	Transformations Supplemental Practice Handout #1-3
	4. Reflections, Expansions, and Compressions	Transformations Supplemental Practice Handout #4-6
	5. Combinations of Transformations	Transformations Supplemental Practice Handout #7-9
	6. Inverse Graphs & Equations	Transformations Supplemental Practice Handout #10-12 & Mickelson Pg. 90 #1,3,4,6 Optional: pg. 90 #8 (can graph by hand or Desmos)
		Practice Test
		Review
		Transformations Test

Transformations Day 1: Basic Graphs

* Identify 3 key points. (Highlighted in yellow)

For each of the given equations, sketch the graph by first creating a table of values.

- Give the domain & range and the equations of any asymptotes.
 - State if the relation is a function, one-to-one function, or neither.

? Revisit after day?"

(Linear)	>	
1. $y = \lambda$	X	V = (×)
•	2 2 - 0 - 2 M	
(Quadrad	ric)	
$\begin{bmatrix} 2. & y - x \end{bmatrix}$	X	$\mathbf{y} = (\mathbf{x})^2$
$\int_{0}^{y} \int_{0}^{y} \int_{0$	- ² - ² - ¹ 0 - ² ²	$\begin{array}{rcl} q &= (-3)^2 = q \\ q &= (-2)^2 = q \\ 1 &= (-1)^2 = 1 \\ 0 &= (0)^2 = 0 \\ q &= (1)^2 = 1 \\ q &= (2)^2 = q \\ q &= (3)^2 = q \end{array}$
	X	$\Lambda = (\chi)_3$
₩ -	- 3 - 2 - 1 0 1 2 3	$-27 = (-3)^{7} = -27$ $-8 = (-2)^{3} = -8$ $-1 = (-1)^{3} = -1$ $0 = (0)^{3} = 0$ $1 = (1)^{3} = 1$ $8 = (2)^{3} = 8$ $27 = (3)^{3} = 27$

NEW
The Absolute Value Function:
$$y = |x|$$

What do the absolute value brackets | | do? They guarantee that the "output" of
the bracket will be positive.

$$|5| = 5$$
 $|-6| = 6$

4. y = |x|

X	y	= ×
1 - 1	л N —	= -3 = 3 = -2 = 2 = -1 = 1
0	D	=101 = 0
1 2 3	۱ 2 3	= ¹ = 1 = 2 = 2 = 3 = 3

The Reciprocal Function $y = \frac{1}{x}$

What are the restrictions on $x? \times \neq 0$ (can't divide by zero)

Sketch below simplified versions of these 6 basic graphs along with key points.

Assignment: Memorize these simplified sketches and their key points! basic shape + ~ 3 key points / feat uses

Transformations Day 2: Functions and Relations

Definitions:

Domain - the set of all possible (χ) values of a relation.

Range - the set of all possible (4) values of a relation.

Relation - a set of ordered pair(s)

Function - a relation in which each domain (χ) value is paired with only one unique range (η) value.

Vertical line test - an equation defines y as a <u>function</u> of x if and only if every vertical line in the coordinate plane intersects the graph of the equation only once.

Restrictions on the domain of a functions:

1. Cannot have a negative number inside an even root.

$$\frac{3-\chi}{3} \frac{\chi}{\chi} = 3$$

 $f(x) = \sqrt{3-x}$

 $f(x) = \frac{8}{x-6} \qquad \chi \neq 6$

2. Cannot have zero in a denominator

One-to-One Function

A one-to-one function is a function in which every single value of the domain is associated with only one value in the range, and vice-versa.

Horizontal Line Test - for a one-to-one function:

A function, f(x), is a one-to-one function of x if and only if every horizontal line in the coordinate plane intersects the function only once at most.

Example 2: Determine whether the following relations are functions, one-to-one functions or neither

Transformations Day 3 Vertical and Horizontal Translations

Vertical translations (shifting the graph up or down)

Example 1: Given the graph of y = f(x) below, describe the transformation applied graph y = f(x) - 2, and map the coordinates of the image points.

Horizontal Translations (shifting the graph left or right) form: y = f(x - h)

For y = f(x - h)

If **h** is positive $\rightarrow horizontal hans$ If **h** is negative $\leftarrow horiz hans 3$ left **Example 2:** Given the graph of y = f(x) below, describe the transformation applied graph y = f(x - 2), and map the coordinates of the image points.

Example 3: Given the graph of y = f(x) below, describe the transformation applied graph y = f(x - 3) - 4, and map the coordinates of the image points.

Example 5: Given the function y = f(x) below, describe the transformation applied to each of the functions below.

a) y = f(x+3) - 2- horizontal translation -3 - vertical translation -2 b) y = f(x-5) + 6- horizontal translation t5 - vertical translation t6 c) y + 1 = f(x+5) y = f(x+5) - 1c) y - 4 = f(x-7) - 7 t = 4 y = f(x-7) - 7 t = 4 y = f(x-7) - 3- horizontal translation +7 - vertical translation +7 - vertical translation -3

Transformations Day 5 Reflections, Expansions and Compressions

<u>Reflections in the Coordinate Axis</u> (flipping the graph over the x or y axis)

So, for y = f(x)

If
$$y = -f(x) \rightarrow \underline{reflection \ across}$$
 If $y = f(-x) \rightarrow \underline{reflection \ across \ y-axis}$
 $(horizontal \ reflection)$

Example 1: Given the graph of y = f(x) below, describe the transformation applied to the graph y = f(-x), and map the general coordinates of the image points.

Vertical Expansions/Compressions (stretching the graph in y direction)

 $(x, y) \rightarrow (x, \frac{1}{3}y)$

Horizontal Compressions/Expansions (stretching the graph in x direction)

Example 3: Given the graph of y = f(x) below, describe the transformation applied to the graph y = f(2x), and map the general coordinates of the image points.

Transformations Day 5: Combined Transformations

All of the transformations we have performed can be summarized as follows: y = f(x) transforms to y = af[b(x-h)] + kI note: must be factored out a < 0, reflection in the *x*-axis **Reflections:** * "inside the function" with x => horizontal change (do opposite) b < 0, reflection in the *y*-axis f^{-1} reflection across the line v = x |a| > 1, vertical expansion by a factor of |a|**Expansion:** $|\mathbf{b}| < 1$, horizontal expansion by a factor of $\frac{1}{|\mathbf{b}|}$ * "Dutside the function" **Compression:** |a| < 1, vertical compression by a factor of |a|=) vertical Change (do what it says) |b| > 1, horizontal compression by a factor of $\frac{1}{|b|}$ **Translation:** k > 0, vertical translation k units up k < 0, vertical translation k units down h > 0, horizontal translation h units right h < 0, horizontal translation h units left

When combining transformations, the reflections/expansions/compressions must occur before the translations. before add subtract multiply/divide

(Like BEDMAS!)

Can remember with "CERT"

Example 1: Given the function y = f(x) below, describe the transformation applied to each of the functions below. \rightarrow get y alone

a)
$$y = -2f(x-4) + 6$$

a) $y = -2f(x-4) + 6$
- vertical reflection
- vertical expansion
bafo 2
- vertical translation
+ $b(y 6)$
- horizontal compression
- horizontal compression
+ $b(y 6)$
- horizontal translation
- y (down4)

$$(\chi, \gamma) \rightarrow (,) \rightarrow (,)$$

Example 2: Given point P (-4, 2) on y = f(x) find the new location for P on:

$$y = -f\left(\frac{x}{3}\right) + 2 \quad (h = 0)$$

$$x = 2 \quad (-4, 2) \rightarrow (-12, -2) \rightarrow (-12, 0)$$

$$(x = 1) \quad (x = 1) \quad (add 2)$$

$$(-4, 2) \rightarrow (-12, -2) \rightarrow (-12, 0)$$

Example 3: If (-3, 4) is a point on the graph y = f(x) what must be the point on the graph y + 7 = -5f(2x - 4) + 3. -7 y = -5f[2(x - 2)] - 9 $x = \frac{1}{2}$ x(-5) $y = 2(x + \frac{1}{2})$ x = 2 $(-3, 4) \rightarrow (-1\frac{1}{2}, -20) \rightarrow (\frac{1}{2}, -24)$ x = 2x = -9

Example 4: Graph the following functions:

N 7

$$y = |x| \quad \forall y'$$
a) $y = -\frac{1}{2}|x-3|+4$ notice "vertex" at (h, k) (i)
 $a = -h_2 \quad h = 3 \quad k = 4$
key points:
 $(-1, 1) \rightarrow (-1, -\frac{1}{2}) \rightarrow (2, 3'/_2)$
 $(0, 0) \rightarrow (0, 0) \rightarrow (3, 4)$
 $(1, 1) \rightarrow (1, -\frac{1}{2}) \rightarrow (4, 3'/_2)$
extras:
 $(-2, 2) \rightarrow (-2, -1) \rightarrow (1, 3)$
 $(2, 2) \rightarrow (2, -1) \rightarrow (5, 3)$

$$a_{2}-3 = -2 = -1 = -1 = -4$$

b) $h(x) = -3\sqrt{-2(x+1)} + 4$

$$y_{2}-\sqrt{x} = 1 = -1 = -1 = -4$$

$$y_{2}-\sqrt{x} = 1 = -3\sqrt{-2(x+1)} + 4$$

$$y_{2}-\sqrt{x} = 1 = -3$$

$$(0,0) \rightarrow (0,0) \rightarrow (-1, 4) = -4$$

$$(1,1) \rightarrow (-\frac{1}{2}, -3) \rightarrow (-1.5, 1)$$

$$(1,1) \rightarrow (-\frac{1}{2}, -3) \rightarrow (-1.5, 1)$$

$$(4,2) \rightarrow (-2, -6) \rightarrow (-3, -2)$$

$$(9,3) \rightarrow (-4.5, -9) \rightarrow (-5.5, -5)$$

Assignment: Transformations Supplemental Practice Handout #7-9

Transformations Day 6: Inverse Graphs & Equations

The Machine Metaphor of Functions

Functions are often thought of as a machine that takes an input value and produces an output value. For example, if the point (3,5) is on the graph of y = f(x) then we know that when we stick a 3 into the machine a 5 comes out.

This allows us to imagine another machine which always does the **opposite** of what f does. We call this the **inverse** of f(x) and can use the notation $f^{-1}(x)$.

1. Given the domain-range map for y = f(x), draw a domain-range map for its inverse:

Is f(x) a function? $\underline{\sqrt{eS}}$ is its inverse a function? \underline{NO} Is f(x) a one-to-one function? \underline{NO}

Notice the inverse this gives us another way to think about one-to-one functions.

y = f(x) will be a one-to-one function if it is a function and its **inverse** is a function.

2. Given the sketch of y = f(x), use a table of values to create a sketch of its inverse:

To Graph an Inverse

- 1) Find key points on the original graph
- 2) Interchange x and y values to get points on the inverse graph
- 3) Plot the **inverse**
- 3. Sketch g(x) = |x| + 2 and its inverse on the graph below.

Now sketch in the line y = x. What do you notice about how the two graphs relate? y = x is like a mirrow for the graph and its inverse

The Inverse is a Reflection across the Line y = x

In example 3, you can see that the inverse graph is a reflection of the original across the line y = x. This may help you visualize your inverses, but it is usually easiest to graph them by interchanging x and y values of key points.

Terminology & Notation Options

We can ask about inverses in a variety of ways. The following four questions would all be asking you to do the *exact same thing:*

Sketch the graph of the inverse of y = f(x)(states "inverse")Sketch the graph of $y = f^{-1}(x)$ (uses inverse notation $f^{-1}(x)$)Sketch the graph of x = f(y)(interchanges x and y)Sketch the reflection of y = f(x) over the line y = x(the inverse is the reflection across y = x)

Note: we only use the notation $f^{-1}(x)$ if the inverse is also a function.

To Find the Inverse of an Equation

To find the inverse graph, we interchange x and y. To find the inverse of an equation, we do the same!

- 1) Write the original equation (use "y" instead of f(x).)
- 2) Interchange x and y

t x + 1 = y + 2 -

3) Solve for y

(If the inverse is also a function, you can rewrite with the notation $f^{-1}(x)$. Otherwise, keep "y".)

4. a. Determine the equation for the reflection of $g(x) = (x + 2)^2 - 1$ over the line y = x.

- switch x and y - solve for y

b. What is the domain of g(x)? What is the domain of the inverse?

- d. Is g(x) a function? 4 Is the inverse a function? 6 Is g(x) a one-to-one function?
- e. What is a restriction that could be put on the graph of g(x) that would make the inverse a function?

Pick one "branch" of g(x) e.g. right side $\int \sum_{x \in \mathbb{R}} |x|^2 - 2^3$ then the inverse will be a function!

5. Determine the equation for the inverse of $h(x) = \sqrt{x+3}$

(Note you will need to **restrict** the domain of your **answer** to avoid including half of the parabola not in the original function. Use sketches to help you do this.)

