\qquad

Transformations

Chapter Notes

Assignment List

Date	Lesson	Assignment
	1. Basic Graphs	Memorize basic graphs (there will be a quiz on these) $\&$
	2. Functions and Relations	Mickelson Page 53 \#1-3
	3.Vertical and Horizontal Translations4. Reflections, Expansions, and Compressions	Transformations Supplemental Practice Handout \#1-3
	5. Combinations of Transformations	Transformations Supplemental Practice Handout \#7-9
	6. Inverse Graphs \& Equations	Transformations Supplemental Practice Handout \#10-12 \& Mickelson Pg. 90 \#1,3,4,6 Optional: pg. 90 \#8 (can graph by hand or Desmos)
		Practice Test
		Review
		Transformations Test

Transformations Day 1: Basic Graphs

* Identify 3 key points. (Highlighted in yellow)

For each of the given equations, sketch the graph by first creating a table of values.
$\left.\begin{array}{ll}\text { - Give the domain \& range and the equations of any asymptotes. } \\ \text { - } \quad \text { State if the relation is a function, one-to-one function, or neither. }\end{array}\right\}$ Revisit after "da yo"
(Linear)

1. $y=x$

\boldsymbol{x}	$\mathbf{y}=(x)$
-3	-3
-2	-2
-1	-1
0	0
1	1
2	2
3	3

(Quadratic)
2. $y=x^{2}$

3. $y=x^{3}$

(Line)

$$
\begin{aligned}
& D:\{x \in \mathbb{R}\} \\
& R:\{y \in \mathbb{R} \mid y \geqslant 0\}
\end{aligned}
$$

function

$$
\begin{aligned}
& D:\{x \in \mathbb{R}\} \\
& R:\{y \in \mathbb{R}\}
\end{aligned}
$$

One-to-ore function
$D:\{x \in \mathbb{R}\}$
$R:\{y \in \mathbb{R}\}$
ore-to-ore function
$\sqrt{\text { The Absolute Value Function: } \boldsymbol{y}=|\boldsymbol{x}|}$
What do the absolute value brackets I I do? They guarantee that the "output" of the bracket will be positive.
$|5|=5$

$$
|-6|=6
$$

4. $y=|x|$

\boldsymbol{x}	$\mathbf{y}=\|x\|$
-3	$3=1-3 \mid=3$
-2	$2=1-2 \mid=2$
-1	$1=1-1 \mid=1$
0	0
1	1
2	2
3	$=121=0$
3	3

$D:\{x \in \mathbb{R}\}$
$R:\{y \in \mathbb{R} \mid y \geqslant 0\}$
function

The Reciprocal Function $y=\frac{1}{x}$
What are the restrictions on $x ? \quad x \neq 0$ (cart divide by zero)
5. $y=\frac{1}{x}$

$D:\{x \in \mathbb{R} \mid x \neq 0\}$
$R:\{y \in \mathbb{R} \mid y \neq 0\}$
one-to-ore function HA at $y=0$

The Square Root Function: $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$
What are the restrictions on x ? (x cant be negative x must be greater than

$$
x \geq 0
$$

6. $y=\sqrt{x}$

x	\mathbf{y}
-2	$?$
-1	$?$
0	0
1	1
2	~ 1.4
4	2
9	3
16	4

 the root" or equal to zero

$$
D:\{x \in \mathbb{R} \mid x \geq 0\}
$$

$=\sqrt{-2}=$ undefined
$=\sqrt{-1}=$ undefined

$$
=\sqrt{0}=0
$$

$$
=\sqrt{1}=1
$$

$$
=\sqrt{2}=1.414 \ldots
$$

$$
=\sqrt{4}=2
$$

$$
=\sqrt{9}=3
$$

$$
=\sqrt{16}=4
$$

Sketch below simplified versions of these 6 basic graphs along with key points.

$$
x=0
$$

Assignment: Memorize these simplified sketches and their key points!

$$
\underbrace{}_{\text {basic shape }}+\approx 3 \text { keypoints / features }
$$

Transformations Day 2: Functions and Relations

Definitions:
Domain - the set of all possible (x) values of a relation.
Range - the set of all possible (y) values of a relation.
Relation - a set of ordered pairs)
Function - a relation in which each domain (x) value is paired with only one unique range (y) value.
Vertical line test - an equation defines y as a function of x if and only if every vertical line in the coordinate plane intersects the graph of the equation only once.

Example 1: Determine the domain/range of the following graphs and whether they are a function/relation set notation

$D:\{x \in \mathbb{R}\}$
$R:\{y \in \mathbb{R} \mid y \leq 3\}$
function

$$
D:\{x \in \mathbb{R} \mid x \geqslant-2\}
$$

$R!\{y \in \mathbb{R}\}$
relation

$$
\{x \in \mathbb{R} \mid-8 \leq x \leq-2\}
$$

$\{y \in \mathbb{R} \mid-6 \leq y \leq 0\}$

$$
\{x \mid x=-3,-2,1,3,4\}
$$

relation

$$
\{y \mid y=-2,0,2\}
$$

Restrictions on the domain of a functions:

1. Cannot have a negative number inside an even root.

$$
f(x)=\sqrt{3-x}
$$

$$
\begin{gathered}
3-x \geqslant 0 \\
3 \geqslant x
\end{gathered}
$$

$$
x \leq 3
$$

2. Cannot have zero in a denominator

$$
f(x)=\frac{8}{x-6} \quad x \neq 6
$$

One-to-One Function

A one-to-one function is a function in which every single value of the domain is associated with only one value in the range, and vice-versa.

Horizontal Line Test - for a one-to-one function:

A function, $f(x)$, is a one-to-one function of x if and only if every horizontal line in the coordinate plane intersects the function only once at most.

Example 2: Determine whether the following relations are functions, one-to-one functions or neither

function

neither

one to one function

neither

Transformations Day 3 Vertical and Horizontal Translations
Vertical translations (shifting the graph up or down) form: $\quad y=f(x-h)+\boldsymbol{k}$

Square Root

$$
y=\sqrt{x}-2
$$

x	y
0	-2
1	-1
4	0
9	1

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=\sqrt{x}-2
\end{aligned}
$$

Absolute Value

$$
y=|x|+3
$$

$$
\begin{aligned}
& y=|x| \\
& y=|x|+3
\end{aligned}
$$

x	y
-3	6
-2	5
-1	4
0	3
1	4
2	5
3	6

So for $\quad y=f(x-h)+\boldsymbol{k}$
If \boldsymbol{k} is positive \rightarrow vertical translation If \boldsymbol{k} is negative \rightarrow vertical translation down K units
Example 1: Given the graph of $y=f(x)$ below, describe the transformation applied graph $y=f(x)-2$, and map the coordinates of the image points.

vertical translation down 2 units

$$
\begin{aligned}
& (-6,-5) \rightarrow \overrightarrow{(-6},-7) \\
& (3,9) \rightarrow(3,7) \\
& (2,9) \rightarrow(2,7) \\
& (5,-3) \quad-7(5,-5)
\end{aligned}
$$

General $(x, y) \rightarrow(x, y-2)$

Horizontal Translations (shifting the graph left or right) form: $y=f(x-\boldsymbol{h})$

Graph: $\quad \underline{\underline{y=x^{2}}} ; \quad y=(x-3)^{2} ; \quad y=(x+2)^{2}$

$$
\begin{array}{ll}
V(3,0) & V(-2,0) \\
\text { horizontal } & \text { horizontal } \\
\text { translation } & \text { translation } \\
3 \text { right } & 2 \text { left }
\end{array}
$$

For $\quad y=f(x-\boldsymbol{h})$
If \boldsymbol{h} is positive $\rightarrow \frac{\text { horizontal trans }}{3 \text { right }}$
If \boldsymbol{h} is negative \leqslant horiz trams 3 left
Example 2: Given the graph of $y=f(x)$ below, describe the transformation applied graph $y=f(x-2)$, and map the coordinates of the image points.
$h=2 \quad \therefore$ horizontal translation 2 to right

$$
\begin{array}{ll}
& +2 \\
(-6,-8) & (-4,-8) \\
(-3,6) & (-1,6) \\
(2,6) & (4,6) \\
(5,-6) & (7,-6) \\
(x, y) & (x+2, y)
\end{array}
$$

Example 3: Given the graph of $y=f(x)$ below, describe the transformation applied graph $y=f(x-3)-4$, and map the coordinates of the image points.

horizontal trans +3 vertical trans -4

$$
(x, y) \rightarrow(x+3, y-4)
$$

Example 5: Given the function $y=f(x)$ below, describe the transformation applied to each of the functions below.
a) $y=f(x+3)-2$

- horizontal translation -3
- vertical translation -2
b) $y=f(x-5)+6$
- horizontal translation +5
- vertical translation 6
c) $y+1=f(x+5)$
$y=f(x+5)-1$
- horizontal translation -5
- vertical translation - 1
d) $y-4=f(x-7)-7$

$$
+4 \quad+4
$$

$y=f(x-7)-3$

- horizontal translation +7
- vertical translation -3

Transformations Day 5 Reflections, Expansions and Compressions
Reflections in the Coordinate Axis (flipping the graph over the x or y axis)

$$
y=\sqrt{x}
$$

$$
y=-\sqrt{x}
$$

$$
y=\sqrt{-x}
$$

So, for $\quad y=f(x)$

$$
\text { If } y=-f(x) \rightarrow \frac{\text { reflection across }}{\begin{array}{l}
\text {-axis } \\
\text { C vertical ref lection) }
\end{array}}
$$

Example 1: Given the graph of $y=f(x)$ below, describe the transformation applied to the graph $y=f(-x)$, and map the general coordinates of the image points.

$$
\begin{aligned}
& (-7,3) \rightarrow(7,3) \\
& (-2,9) \rightarrow(2,9) \\
& (4,-2) \rightarrow(-4,-2) \\
& (x, y) \rightarrow(-x, y)
\end{aligned}
$$

Reflection across y-axis

Vertical Expansions/Compressions (stretching the graph in y direction)

Graph: $y=\sqrt{x}$
$y=2 \sqrt{x}$

x	y
0	0
1	1
4	2
9	3

$y=\frac{1}{2} \sqrt{x}$

Compression

expansion
For $\quad y=a f(x)$

$$
\text { If }|\mathbf{a}|>1 \rightarrow \frac{\text { vertical expasion by }}{\text { a factor of }|a|}
$$

Example 2: Given the graph of $y=f(x)$ below, describe the transformation applied to the graph $y=\frac{1}{3} f(x)$, and map the general coordinates of the image points.

$$
\begin{aligned}
& \text { vertical compression ba } \\
& (-6,-8) \rightarrow(-6,-8 / 3) \\
& (-3,6) \rightarrow(-3,2) \\
& (2,6) \rightarrow(2,2) \\
& (5,-6) \rightarrow(5,-2) \\
& (x, y) \rightarrow\left(x, \frac{1}{3} y\right)
\end{aligned}
$$

Horizontal Compressions/Expansions (stretching the graph in x direction)

Compression
Graph: $y=x^{2}$

For $\quad y=f(b x)$

$$
\text { If }|\mathbf{b}|>1 \rightarrow \frac{\text { horizontal compression }}{\text { by a factor of } \frac{1}{|6|}}
$$

expansion
$y=\left(\frac{1}{2} x\right)^{2}$

If $|\mathbf{b}|<1 \rightarrow \frac{\text { horizontal expansion }}{\text { by a factor of } \frac{1}{161}}$

Example 3: Given the graph of $y=f(x)$ below, describe the transformation applied to the graph $y=f(2 x)$, and map the general coordinates of the image points.
horizontal compression by a functor of $\frac{1}{2}$

$$
\begin{aligned}
& (-6,-8) \rightarrow(-3,-8) \\
& (-3,6) \rightarrow(-11 / 2,6) \\
& (2,6) \rightarrow(1,6) \\
& (5,-6) \rightarrow(25,-6) \\
& (9,-6) \rightarrow(4.5,-6) \\
& (x, y) \rightarrow\left(\frac{1}{2} x, y\right)
\end{aligned}
$$

Example 4: Given the graph of $y=f(x)$, sketch the graph of $y=-\frac{1}{2} f\left(\frac{1}{3} x\right)$

$$
p_{a=-\frac{1}{2}}^{p} C_{b}=\frac{1}{3}
$$

- vertical reflection $2 X^{2}$
- vertical compression bato $\frac{1}{2}$
- horizontal expansion bafo 3

$$
(x, y) \rightarrow\left(3 x,-\frac{1}{2} y\right)
$$

key points:

$$
\times 3 \times-\frac{1}{2}
$$

$$
(-7,0) \rightarrow(-21,0)
$$

$$
\begin{aligned}
\text { V"valley" }(-3,-4) \rightarrow(-9,2) \text { now a "peak" be cause we flipped it } \\
\text { vertically }
\end{aligned}
$$

\wedge "peak" $(1,2) \rightarrow(3,-1)$ now a"valley"

$$
(3,-1) \rightarrow(9,-0.5)
$$

Transformations Day 5: Combined Transformations
All of the transformations we have performed can be alone! $y=f(x)$ transforms to $\quad y=a f[b(x-h)]+k \quad h \quad$ bracket with "lx"

Reflections: $\quad a<0$, reflection in the x-axis
$\tau_{\text {note: }}$ must be factored out $b<0$, reflection in the y-axis
f^{-1} reflection across the line $\mathrm{y}=\mathrm{x}$
Expansion: $\quad|a|>1$, vertical expansion by a factor of $|a|$

$$
|\mathbf{b}|<1 \text {, horizontal expansion by a factor of } \frac{1}{|b|}
$$

Compression: $|a|<1$, vertical compression by a factor of $|a|$

$$
|b|>1, \text { horizontal compression by a factor of } \frac{1}{|b|}
$$

Translation: $\quad k>0$, vertical translation k units up
$k<0$, vertical translation k units down
$h>0$, horizontal translation h units right
$h<0$, horizontal translation h units left

* "inside the function" with x
\Rightarrow horizontal change (do opposite)
* "outside the function"
\Rightarrow vertical change
(do what it says)

When combining transformations, the reflections/expansions/compressions must occur before the translations.
before add l subtract multiply/ divide
(like BEDMAS!)
Can remember with "CERT"

Example 1: Given the function $y=f(x)$ below, describe the transformation applied to each of the functions below.

$$
a=-2 \quad b=1 \quad h=4 \quad k=6
$$

$$
\begin{aligned}
& \text { must factor ont } \\
& a=1 \sqrt{ } b=-3 \quad h=-4 \quad k=-4
\end{aligned}
$$

a) $y=-2 f(x-4)+6$

- vertical reflection
- vertical expansion bafo 2
- vertical translation +6 (of 6)
- horizontal translation +4 (right 4)
b) $y=f(-3 x-12)-4$

$$
y=f[-3(x+4)]-4
$$

- horizontal reflection
- horizontal compression bapo $\frac{1}{3}$
- horizontal translation
- 4 (left 4)
- vertical translation - 4 (dour)
c) $2 y+10=f(5-x)$

$$
\begin{aligned}
2 y & =f(5-x)-10 \\
y & =\frac{1}{2} f(-x+5)-5 \\
y & =\frac{1}{2} f[-(x-5)]-5 \quad \text { Reactor }
\end{aligned}
$$

$$
k=-5
$$

$$
\downarrow
$$

vertical
Comps
reflection rato $\frac{1}{2}$

$$
(x, y) \rightarrow\left(^{x \frac{1}{b} \times a}\right) \rightarrow\left(^{+h},{ }^{+k}\right)
$$

Example 2: Given point $\mathrm{P}(-4,2)$ on $y=f(x)$ find the new location for P on:

$$
\begin{aligned}
& y=-f\left(\frac{x}{3}\right)+2^{(h=0)} \\
& a=-1 \quad \wedge_{k=2} \quad b=\frac{1}{3} \quad(\text { add } 2) \\
& \left(x \text { by } \quad\left(x \text { by }^{3}\right)\right. \\
& -1) \quad
\end{aligned}
$$

Example 3: If $(-3,4)$ is a point on the graph $y=f(x)$ what must be the point on the graph

$$
\begin{aligned}
& \begin{array}{l}
y+7 \\
-7
\end{array}=-5 f(2 x-4)+3 . \\
& y=-5 f[2(x-2)]-4 \\
& \left.\begin{array}{l}
a=-5 \\
b
\end{array}\right)=2\left(\times \frac{1}{2}\right) \quad \times \frac{1}{2} \quad x(-5) \quad+2-4 \\
& h=2 \\
& k=-4
\end{aligned}
$$

Example 4: Graph the following functions:

$$
y=|x|
$$

a) $y=-\frac{1}{2}|x-3|+4$ notice "vertex" at $(h, i C) \because$

$$
a=-1 / 2 \quad h=3 \quad k=4
$$

keypoints:

$$
\begin{array}{ll}
& \rightarrow \times-\frac{1}{2} \\
(-1,1) & \rightarrow\left(-1,-\frac{1}{2}\right) \rightarrow(2,31 / 2) \\
(0,0) & \rightarrow(0,0) \rightarrow(3,4) \\
(1,1) & \rightarrow\left(1,-\frac{1}{2}\right) \rightarrow(4,31 / 2)
\end{array}
$$

extras:

$$
\begin{aligned}
& \text { extras: } \rightarrow(-2,-1) \rightarrow(1,3) \\
& (-2,2) \rightarrow(2,-1) \rightarrow(5,3) \\
& (2,2) \rightarrow(2)
\end{aligned}
$$

$$
a=-3 \quad b=-2 \quad h=-1 \quad k=4
$$

b) $h(x)=-3 \sqrt{-2(x+1)}+4$

$$
y=\sqrt{x}
$$

ley points

$$
\begin{aligned}
& (0,0) \rightarrow(0,0) \rightarrow(-1,4) \\
& (1,1) \rightarrow\left(-\frac{1}{2},-3\right) \rightarrow(-1.5,1) \\
& (4,2) \rightarrow(-2,-6) \rightarrow(-3,-2) \\
& (9,3) \rightarrow(-4.5,-9) \rightarrow(-5.5,-5)
\end{aligned}
$$

Example 5: Given the graph of $y=f(x)$, sketch the graph $y=-2 f(x+3)+1 \longleftarrow h=-3$

$$
\begin{aligned}
& \text { keypoints } \rightarrow x(-2) \rightarrow-3+1 \\
& A(-3,3) \rightarrow(-3,-6) \rightarrow(-6,-5) A^{\prime} \\
& B(-1,1) \rightarrow(-1,-2) \rightarrow(-4,-1) B^{\prime} \\
& C(0,2) \rightarrow(0,-4) \rightarrow(-3,-3) c^{\prime} \\
& D(2,2) \rightarrow(2,-4) \rightarrow(-1,-3) D^{\prime}
\end{aligned}
$$

* optional to label points.
sometimes it helps to picture
 how to "connect the dots".

Transformations Day 6: Inverse Graphs \& Equations

The Machine Metaphor of Functions

Functions are often thought of as a machine that takes an input value and produces an output value. For example, if the point $(3,5)$ is on the graph of $y=f(x)$ then we know that when we stick a 3 into the machine a 5 comes out.

$$
3 \rightarrow f(x) \rightarrow 5
$$

This allows us to imagine another machine which always does the opposite of what f does. We call this the inverse of $f(x)$ and can use the notation $f^{-1}(x)$.

Another way of thinking of this is that whatever $f(x)$ does, $f^{-1}(x)$ "undoes."

$$
3 \rightarrow f(x) \rightarrow 5 \quad 5 \rightarrow f^{-1}(x) \rightarrow 3
$$

1. Given the domain-range map for $y=f(x)$, draw a domain-range map for its inverse:

Is $f(x)$ a function? yes is its inverse a function? \qquad no Is $f(x)$ a one-to-one function? \qquad
Notice the inverse this gives us another way to think about one-to-one functions. $y=f(x)$ will be a one-to-one function if it is a function and its inverse is a function.
2. Given the sketch of $y=f(x)$, use a table of values to create a sketch of its inverse:

To Graph an Inverse

1) Find key points on the original graph
2) Interchange \boldsymbol{x} and \boldsymbol{y} values to get points on the inverse graph
3) Plot the inverse
3. Sketch $g(x)=|x|+2$ and its inverse on the graph below.

$$
\begin{array}{cc}
y=|x|+2 & \text { Basic graph up } 2 \\
x \leftrightarrow y \\
(3,-1) \tag{3,-1}\\
(-1,1) \rightarrow(-1,3) & (2,0) \\
(0,0) \rightarrow(0,2) & (3,1)
\end{array}
$$

$g(x)$

Now sketch in the line $\boldsymbol{y}=\boldsymbol{x}$. What do you notice about how the two graphs relate?

$$
y=x \text { is like a mirrow for the graph and its inverse }
$$

The Inverse is a Reflection across the Line $\boldsymbol{y}=\boldsymbol{x}$
In example 3, you can see that the inverse graph is a reflection of the original across the line $\boldsymbol{y}=\boldsymbol{x}$. This may help you visualize your inverses, but it is usually easiest to graph them by interchanging x and y values of key points.

Terminology \& Notation Options

We can ask about inverses in a variety of ways. The following four questions would all be asking you to do the exact same thing:

Sketch the graph of the inverse of $y=f(x) \quad$ (states "inverse")
Sketch the graph of $y=f^{-1}(x)$
(uses inverse notation $f^{-1}(x)$)
Sketch the graph of $x=f(y)$
(interchanges x and y)
Sketch the reflection of $y=f(x)$ over the line $y=x \quad$ (the inverse is the reflection across $y=x$)

Note: we only use the notation $f^{-1}(x)$ if the inverse is also a function.

To Find the Inverse of an Equation
To find the inverse graph, we interchange x and y. To find the inverse of an equation, we do the same!

1) Write the original equation (use " y " instead of $f(x)$.)
2) Interchange x and y
3) Solve for y
(If the inverse is also a function, you can rewrite with the notation $f^{-1}(x)$. Otherwise, keep " y ".)
4. a. Determine the equation for the reflection of $g(x)=(x+2)^{2}-1$ over the line $y=x$.
(1) $\quad y=(x+2)^{2}-1 \quad \square \pm \sqrt{x+1}-2=y$
(2) $x=(y+2)^{2}-1$
(3)

$$
\begin{aligned}
& x+1=(y+2)^{2} \\
& \pm \sqrt{x+1}=y+2
\end{aligned} \text { What is the domain of } g(x) \text { ? } \quad\left\{\begin{array}{l}
x \in \mathbb{R}\} \\
\\
\{y \in \mathbb{R} \mid y \geqslant-1\}
\end{array}\right.
$$

Inverse
Switch

What is this asking you to do?
Find the equation of the inverse
How do you do that?

- switch x and y
- solve for y
b. What is the domain of $g(x)$? What is the domain of the inverse?

$$
R:\{y \in \mathbb{R}\}
$$

$D:\{x \in \mathbb{R} \mid x \geqslant-1\}$
c. Sketch the graphs of $y=g(x)$ and $x=g(y)$.

$$
\begin{aligned}
& y=(x+2)^{2}-1 \\
& (-1,1) \rightarrow(-3,0) \\
& (0,0) \rightarrow(-2,-1) \\
& (1,1) \rightarrow(-1,0) \\
& (2,4) \rightarrow(0,3)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{lnv} p+s \\
& (0,-3) \\
& (-1,-2) \\
& (0,-1) \\
& (3,0)
\end{aligned}
$$

Notice: you can see

d. Is $g(x)$ a function? Yes Is the inverse a function? no is $g(x)$ a one-to-one function? no
e. What is a restriction that could be put on the graph of $g(x)$ that would make the inverse a function? Pick one "branch" of $g(x)$ e.g. right side

5. Determine the equation for the inverse of $h(x)=\sqrt{x+3}$
(Note you will need to restrict the domain of your answer to avoid including half of the parabola not in the original function. Use sketches to help you do this.)

$$
\begin{aligned}
y & =\sqrt{x+3} \\
x & =\sqrt{y+3} \\
x^{2} & =y+3 \\
x^{2}-3 & =y \\
y & =x^{2}-3
\end{aligned}
$$

If we don't restrict the domain, we get an extra piece. We only want right branch so $x \geqslant 0$

$$
f^{-1}(x)=x^{2}-3, x \geqslant 0
$$

