\qquad

Trigonometric Equations and Identities

Chapter Notes key

Assignment List

Date	Lesson	Assignment
	1. Trigonometric Equations part I	Mickelson Page 321 \#1,2ab, 5a-e,h,i,m,o
	2. Trigonometric Equations part II	Mickelson Page 323 \#4
	3. The Fundamental Identities	Mickelson Page 304 \#2-9 (as many as needed*)
	4. Verifying Trigonometric Identities	Mickelson Page 311 \#1-25
	5. Sum and Difference Identities	Mickelson Page 332 \#1ace,2a-d,3,5
	6. Double Angle Identities	Mickelson Page 340 \#1-5 (as many as needed*)
		Practice Test
		Review
		Trigonometric Identities and Equations Test

To repeat every 2π, we add (or subtract)
Day 1 - Trigonometric Equations part I whole numbers of 2π.
Use" $n \in I$ " (integers)

Trigonometric Equations

$$
n=\ldots-3,-2,-1,0,1,2,3, \ldots
$$

When solving a trig equation, we can solve for a specified domain of values (usually $0 \leq \theta<2 \pi$) or in general form (for all potential values)

$$
\sec \theta=\frac{r}{2} \quad(\text { negative in } Q\|, Q\| I)
$$

Example 1: Solve: $\sec \theta=-\frac{2^{2}}{\sqrt{3}}$ for
a) $0 \leq \theta<2 \pi$
repeat every
b) general form

reference angle: $\frac{\pi}{6}$
in QII : $\frac{6 \pi}{6}-\frac{\pi}{6}=\frac{5 \pi}{6}$
in QIIT: $\frac{6 \pi}{6}+\frac{\pi}{6}=\frac{7 \pi}{6}$
b)

$$
\begin{aligned}
& \theta=\frac{5 \pi}{6}+2 \pi n, n \in I \\
& \theta=\frac{7 \pi}{6}+2 \pi n, n \in I
\end{aligned}
$$

Example 2: Solve: $\tan \theta=-0.3124$ for
a) $0 \leq \theta<2 \pi$
b) general form a tanisneg. in QII, QIV

reference angle: $\tan ^{-1}(0.3124)=0.3028$ (Rad mode)
a) $\theta=2.8388,5.9804$
b) Tan/cot repeat every π, so just use first answer and add $+\pi n, n \in I$

$$
\theta=2.8388+\pi n, n \in I
$$

QUe: $\quad \theta=2 \pi-0.3028=5.9804$
$\downarrow!$ Use a substitution
Example 3: Solve: $2 \cos ^{2} x-\cos x-1=0$ for
a) $0 \leq x<2 \pi$
b) general form

Let $a=\cos x$

$$
2(a)^{2}-(a)-1=0
$$

Solve for " a "

$$
\begin{gathered}
2 a^{2}-a-1=0 \\
(2 a+1)(a-1)=0 \\
\swarrow \text { or } y \\
a=-\frac{1}{2} \quad a=1
\end{gathered}
$$

Factor

$$
=2 x+1=-2
$$

$$
-2+1=-1
$$

using ac

$$
\left(a-\frac{2}{2}\right)\left(a+\frac{1}{2}\right)
$$

or decomposition

(sub back is: $a=\cos x$)

$$
\begin{aligned}
& 2 a^{2}-a-1 \\
& 2 a^{2}-2 a+1 a-1 \\
& 2 a(a-1)+1(a-1) \\
& (a-1)(2 a+1)
\end{aligned}
$$

(cos is neg. in QII, QIII)

reference angle $=\frac{\pi}{3}$
QII: $x=\frac{3 \pi}{3}-\frac{\pi}{3}=\frac{2 \pi}{3}$
QUIT: $x=\frac{3 \pi}{3}+\frac{\pi}{3}=\frac{4 \pi}{3}$
a) $x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
b)

$$
\begin{aligned}
& x=2 \pi n(0+2 \pi n) \\
& x=\frac{2 \pi}{3}+2 \pi n \\
& x=\frac{4 \pi}{3}+2 \pi n
\end{aligned}
$$

$n \in I$

Day 2 - Trigonometric Equations part II
Solving trigonometric equations with angles other than $\boldsymbol{\theta}$
Solving a trig equation for angles with coefficients ($2 \theta, 3 \theta$, etc.) follows very similar steps:

1. Isolate the trig function. e.g. $\sin 2 \theta$
2. Determine the general solutions) for angle 2θ. * find general first
3. Determine the general solution (s) for angle θ. (divide by the coefficient)
4. Determine the specific ('conditional') solutions) for the given interval.

Example 1: Solve: $\sin 2 x=-1$ for
a) general form
b) $0 \leq x<2 \pi$

Let $\theta=2 x$

$$
\sin (\theta)=-1
$$

a) $x=\frac{3 \pi}{4}+\pi n$
b) \quad stop at $\frac{8 \pi}{4}$
$x_{1}=\frac{3 \pi}{4}$
$x_{2}=\frac{3 \pi}{4}+\frac{4 \pi}{4}=\frac{7 \pi}{4}$
(can keep going...)

$$
x=\frac{7 \pi}{4}+\frac{4 \pi}{4}=\frac{11 \pi}{4}
$$

too big!
b) $0 \leq \theta<2 \pi-\frac{24 \pi}{12}{ }^{\text {max }}$
$\operatorname{Let} A=2 \theta$

$$
\begin{aligned}
\sqrt{3} \tan A & +1=0 \\
-1 & -1 \\
\frac{\sqrt{3} \tan A}{\sqrt{3}} & =\frac{-1}{\sqrt{3}}
\end{aligned}
$$

$$
\tan A=-\frac{1}{\sqrt{3}}
$$

a) $\theta=\frac{5 \pi}{12}+\frac{\pi}{2} n$

$$
\text { b) } \begin{aligned}
\theta_{1} & =\frac{5 \pi}{12} \\
\theta_{2} & =\frac{5 \pi}{12}+\frac{\pi}{2} \\
& =\frac{5 \pi}{12}+\frac{6 \pi}{12} \\
& =\frac{11 \pi}{12} \\
\theta_{3} & =\frac{11 \pi}{12}+\frac{6 \pi}{12} \\
& =\frac{17 \pi}{12} \\
\theta_{4} & =\frac{17 \pi}{12}+\frac{6 \pi}{12} \\
& =\frac{23 \pi}{12}
\end{aligned}
$$

$$
\text { ref. angle }=\frac{\pi}{6}
$$

$$
\text { QI: } \left.A=\frac{6 \pi}{6}-\frac{\pi}{6}=\frac{5 \pi}{6}\right)
$$

repeats every π
$\downarrow \vDash{ }^{()^{2}}$ quadratic has up to 2 answers $\left.\begin{array}{l}(2 x) \\ \text { double angle doubles number of answers }\end{array}\right\}$ to 8 answer!!!!

Example 3: Solve: $4 \sin ^{2} 2 x+2 \sin 2 x-2=0$ for
(1) Let $a=\sin 2 x$

$$
\begin{aligned}
& \text { Factor: } \\
& \frac{2}{2} x^{-1}=-2 \\
& \frac{x^{-1}-}{}=+1 \\
& \left(a-\frac{1}{2}\right)\left(a+\frac{2}{2}\right) \\
& (2 a-1)(a+1) \\
& \frac{\text { decamp }}{2 a^{2}+a-1} \\
& 2 a^{2}+2 a-a-1 \\
& 2 a(a+1)-1(a+1) \\
& (a+1)(2 a-1)
\end{aligned}
$$

$$
4(a)^{2}+2(a)-2=0
$$

$$
\frac{4 a^{2}}{2}+\frac{2 a}{2}-\frac{2}{2}=\frac{0}{2}
$$

$$
2 a^{2}+a-1=0
$$

$$
2(2 a-1)(a+1)=0
$$

$$
\therefore a=\frac{1}{2} \quad a=-1
$$

$$
\therefore \sin (2 x)=\frac{1}{2} \quad \therefore \sin (2 x)=-1
$$

(2) Let $\theta=2 x$ and solve for θ $\sin \theta=\frac{1}{2}$ or $\sin \theta=-1$ \sin is \oplus in QI, QU

$$
\theta_{R}=\frac{\pi}{6}
$$

QI: $\theta=\frac{\pi}{6}$
QII: $\theta=\frac{6 \pi}{6}-\frac{\pi}{6}=\frac{5 \pi}{6}$
(3) Find general solnfor θ :

$$
\begin{aligned}
& \theta_{1}=\frac{\pi}{6}+2 \pi n \quad \theta_{2}=\frac{5 \pi}{6}+2 \pi n \\
& \theta_{3}=\frac{3 \pi}{2}+2 \pi n
\end{aligned}
$$

Assignment p. 323 \#4

$(0,-1)$
$x y$

$$
\sin \theta=\frac{-1}{1} y
$$

When $\theta=\frac{3 \pi}{2}$
a) $0 \leq \theta<2 \pi$
b) general form
(4) Find general solution for $x:(\theta=2 x)$

$$
\begin{array}{cc}
\theta_{1}=\frac{\pi}{6}+2 \pi n & \theta_{2}=\frac{5 \pi}{6}+2 \pi n \\
\downarrow & \nLeftarrow \\
\frac{2 x_{1}}{2}=\frac{\pi}{2 \cdot 6}+\frac{2 \pi n}{2} & \frac{2 x_{2}}{2}=\frac{5 \pi}{2 \cdot 6}+\frac{2 \pi n}{2} \\
x_{1}=\frac{\pi}{12}+\pi n & x_{2}=\frac{5 \pi}{12}+\pi n
\end{array}
$$

$$
\begin{array}{ll}
\theta_{3}=\frac{3 \pi}{2}+2 \pi n & \text { b) general } \\
\frac{2 x_{3}}{2}=\frac{3 \pi}{2 \cdot 2}+\frac{2 \pi n}{2} & \text { solutions } \\
x_{3}=\frac{3 \pi}{4}+\pi n & \\
\hline
\end{array}
$$

(5) Find solutions from $0 \leq \theta<2 \pi$

a)

$$
x=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{3 \pi}{4}, \frac{13 \pi}{12}, \frac{17 \pi}{12}, \frac{7 \pi}{4}
$$

(xt) $3 \pi \stackrel{+\frac{4 \pi}{2}}{\sim} \overbrace{8}^{+\frac{4}{2} \pi} 11 \pi /$ (add $\pi=\frac{4 \pi}{4}$ but not pis $\frac{8 \pi}{4}$)
(x) $\frac{\pi}{12}, \frac{13 \pi}{12}, \underset{\text { wing }}{2 \frac{5 \pi}{16}}$

Trigonometric Identities and Equations Day 3: The Fundamental Identities

In trigonometry, there are expressions and equations that are true for any given angle. These are called identities. An infinite number of trigonometric identities exist, and we are going to prove many of these identities, but we are going to need some basic identities first.

The six basic trig ratios will lead to our first identities

$$
\begin{aligned}
& y=r \sin \theta \\
& \sin \theta=\frac{y}{r} \csc \theta=\frac{r}{y}=\frac{1}{\sin \theta} \\
& \cos \theta=\frac{x}{r} \quad \sec \theta=\frac{r}{x}=\frac{1}{\cos \theta} \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \tan \theta=\frac{y}{x} \quad \cot \theta=\frac{x}{y}=\frac{1}{\tan \theta} \\
& \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& \tan \theta=\frac{r \sin \theta}{r \cos \theta}=\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

And our knowledge of Pythagoras will determine the remaining Fundamental Trigonometric Identities

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
x^{2}+y^{2}=c^{2} \\
(r \cos \theta)^{2}+(r \sin \theta)^{2}=r^{2} \\
\frac{r^{2} \cos ^{2} \theta}{r^{2}}+\frac{r^{2} \sin ^{2} \theta}{r^{2}}=\frac{r^{2}}{r^{2}} \\
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
\frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta=1}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \\
1+\left(\frac{\sin \theta}{\cos \theta}\right)^{2}=\left(\frac{1}{\cos \theta}\right)^{2} \\
1+\tan ^{2} \theta=\sec ^{2} \theta
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \\
& \frac{\cos ^{2} \theta}{\sin ^{2} \theta}+1=\left(\frac{1}{\sin \theta}\right)^{2} \\
& \left(\frac{\cos \theta}{\sin \theta}\right)^{2}+1=\csc ^{2} \theta \\
& \cot ^{2} \theta+1=\csc ^{2} \theta
\end{aligned}
$$

Pythagorean Identities:

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Reciprocal and Quotient Identities:

$$
\sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta} \quad \cot \theta=\frac{1}{\tan \theta} \quad \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Corollary Identities (a statement that follows readily from a previous statement)

$$
\begin{array}{lll}
\sin ^{2} \theta+\cos ^{2} \theta=1 & 1+\tan ^{2} \theta=\sec ^{2} \theta & 1+\cot ^{2} \theta=\csc ^{2} \theta \\
\cos ^{2} \theta=1-\sin ^{2} \theta & \tan ^{2} \theta=\sec ^{2} \theta-1 & \cot ^{2} \theta=\csc ^{2} \theta-1 \\
\sin ^{2} \theta=1-\cos ^{2} \theta & \tan ^{2} \theta-\sec ^{2} \theta=-1 & \csc ^{2} \theta-\cot ^{2} \theta=1 \\
1=\sin ^{2} \theta+\cos ^{2} \theta & \sec ^{2} \theta-\tan ^{2} \theta=1 &
\end{array}
$$

Simplifying a Trigonometric Expression

There are many different strategies to simplifying a trigonometric expression. The following examples will look at the most common types of strategies.

Example 1: Simplify

$$
\begin{aligned}
\sin \theta+\frac{\cos ^{2} \theta}{\sin \theta} & =\frac{\sin ^{2} \theta}{\sin \theta}+\frac{\cos ^{2} \theta}{\sin \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta} \\
& =\frac{1}{\sin \theta}=\csc \theta
\end{aligned}
$$

Example 2: Simplify

$$
\frac{1}{\sin ^{2} \theta}-1
$$

$$
\frac{1}{\sin ^{2} \theta}-\frac{\sin ^{2} \theta}{\sin ^{2} \theta}
$$

$$
\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}
$$

Example 4: Simplify

$$
\begin{aligned}
& a^{4}-2 a^{4} x-2 \cos ^{2} x+1 \\
& \left(a^{2}-1\right)\left(a^{2}-1\right) \\
& \left(\cos ^{2} \theta-1\right)\left(\cos ^{2} \theta-1\right) \\
& \left(-\sin ^{2} x\right)\left(-\sin ^{2} x\right) \\
& \sin ^{4} x
\end{aligned}
$$

Example 6: Simplify $\frac{\sin x}{(1-\cos x)}+\frac{\sin x}{(1+\cos x)}$

$$
\begin{aligned}
& \frac{\sin x(1+\cos x)}{(1-\cos x(1+\cos x)}+\frac{\sin x(1-\cos x)}{(1+\cos x)(1-\cos x)} \\
& \frac{\sin x+\sin x \cos x}{1-\cos ^{2} x}+\frac{\sin x-\sin x \cos x}{1-\cos ^{2} x}
\end{aligned}
$$

$$
\frac{\sin x+\sin x}{1-\cos ^{2} x}=\frac{2 \sin x}{\sin ^{2} x}
$$

$$
=\frac{2}{\sin x}=2 \csc x
$$

Restrictions

Just like any algebraic expression, a trigonometric expression cannot have zero in the denominator. We must consider the exact values that would result in a denominator of zero.

Example 7: Determine the restrictions on $\tan x-\csc x$ for $0 \leq x<2 \pi$ $\tan x-\csc x$ $\frac{\sin x}{\cos x}-\frac{1}{\sin x}$

$x \neq \frac{\pi}{2}, \frac{3 \pi}{2}$

$$
x \neq 0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}
$$

Assignment p; 304 \#2-9 (as many as needed)

Trigonometric Identities and Equations Day 4 : Verifying Trigonometric Identities

Trigonometric Identities
When verifying trigonometric identities, the key is using the rules for algebra as well as the fundamental trigonometric identities to rewrite and simplify expressions. An identity has been proven when the right side of the equal sign is the same as the left side of the equal sign.

Example 1: Prove the identity: $\frac{\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta}{} \begin{aligned} & \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\ & \tan ^{2} \theta \\ & \tan ^{2} \theta \\ & \text { LHS }=\text { RUS }\end{aligned}$

Example 2: Prove the identity: $\frac{1+\tan \theta}{\sec \theta}=\sin \theta+\cos \theta$

Example 4: Prove the identity: $\quad \sec \theta \csc \theta \tan \theta=\sec ^{2} \theta$ $\begin{aligned} & \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta} \cdot \frac{\sin \theta}{\cos \theta} \\ & \frac{1}{\cos ^{2} \theta} \\ & \sec ^{2} \theta \\ & \text { LS }=\text { RS } 1 \text { R }\end{aligned}$

$$
\sec ^{2} \theta
$$

$$
L S=R S
$$

Trigonometric Identities and Equations Day 5: Sum and Difference Identities
$\alpha \beta \rightarrow$ differentangles
Sum and Difference Identities
Identities are not limited to the fundamental identities and single angles. We can also use identities involving sums and differences. The derivations of these identities are shown on page 327 of your textbook. We will be looking not at proving these identities but using these identities.

$$
\begin{array}{ll}
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta & \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta & \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} & \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{array}
$$

Example 1: Find the exact value: $\sin (\alpha+\beta)$

$$
\sin \frac{\pi}{3} \cos \frac{\pi}{6}+\cos \frac{\pi}{3} \sin \frac{\pi}{6}=\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)
$$

$$
\begin{aligned}
& =\sin \left(\frac{2 \pi}{6}+\frac{\pi}{6}\right) \\
& =\sin \left(\frac{3 \pi}{6}\right) \\
& =\sin \left(\frac{\pi}{2}\right) \\
& =1
\end{aligned}
$$

Example 3: Express as a single function, then evaluate.

$$
\cos ^{2} \frac{\pi}{4}-\sin ^{2} \frac{\pi}{4}
$$

$$
\cos \frac{\pi}{4} \cos \frac{\pi}{4}-\sin \frac{\pi}{4} \sin \frac{\pi}{4}
$$

$$
\cos \left(\frac{\pi}{4}+\frac{\pi}{4}\right)
$$

$$
\cos \left(\frac{\pi}{2}\right)=0
$$

Example 2: Find the exact value: $\cos 345^{\circ}$

$$
\begin{aligned}
& \cos (\alpha \pm \beta)=\cos (45+300) \\
= & \cos 45 \cos 300-\sin 45-\sin 300 \\
= & \left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{-\sqrt{3}}{2}\right) \frac{1 / 1}{1 /}-\frac{1}{2 \cdot \sqrt{2} / \sqrt{3}} \\
= & \frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}} \\
= & \frac{1+\sqrt{3} \cdot \sqrt{2}}{2 \sqrt{2}}=\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

Example 4: Express as a single function, then evaluate. $\frac{\tan \pi-\tan \frac{\pi}{3}}{1+\tan \pi \tan \frac{\pi}{3}}=\tan \left(\pi-\frac{\pi}{3}\right)$ $\left.\left\lvert\, \begin{array}{rl}\left\lvert\, \frac{\sqrt{3}}{2}\right. & \\ & =\tan \left(\frac{2 \pi}{3}\right) \\ & =\frac{\sqrt{3}}{-1} \\ & =-\sqrt{3}\end{array}\right.\right)$.

Example 5: Given angle A in quadrant I and angle B in quadrant II, such that $\sin A=\frac{4}{5}$ and $\cos B=-\frac{12}{13}$, find $\tan (A-B)$.

$$
\begin{aligned}
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} & =\frac{\frac{21}{12}}{\frac{16}{36}} \\
& =\frac{\frac{4}{3}-\left(\frac{-5}{12}\right)}{1+\left(\frac{4}{3}\right)\left(\frac{-5}{12}\right)} \\
= & =\frac{21}{12} \cdot \frac{363}{16} \\
& =\frac{63}{16}+\frac{5}{12}
\end{aligned}
$$

A

Example 6: Prove:

$$
\begin{aligned}
& \frac{\sin 2 x}{\cos 2 x+1}=\tan x \\
& \frac{\sin (x+x)}{\cos (x+x)+1}=\frac{\sin x}{\cos x} \\
& \frac{\sin x \cos x+\sin x \cos x}{\cos x \cos x-\sin x \sin x+1} \\
& \frac{\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x+1}}{\frac{2 \sin x \cos x}{\cos ^{2} x+\cos ^{2} x}} \\
& =\frac{2 x \sin x \cos x}{x \cos ^{2} x}=\frac{\sin x}{\cos x} \\
& \text { CHS }=\text { OHS }
\end{aligned}
$$

Trigonometric Identities and Equations Day 6: Double Angle Identities

Double Angle Identities

Using the sum and difference identities, we can determine other trigonometric identities

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
\sin (\alpha+\alpha) & =\sin \alpha \cos \alpha+\cos \alpha \sin \alpha \\
& =2 \sin \alpha \cos \alpha
\end{aligned}
$$

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\cos (\alpha+\alpha) & =\cos \alpha \cos \alpha-\sin ^{2} \alpha \sin \alpha \\
& =\cos ^{2} \alpha-\sin ^{2} \alpha \\
& =\cos ^{2} \alpha-\left(1-\cos ^{2} \alpha\right) \\
& =\frac{2 \cos ^{2} \alpha-1}{\tan (\alpha+\beta)}
\end{aligned}=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
$$

Double Angle Identities (same angle)

$$
\begin{array}{rlr}
\sin 2 \theta=2 \sin \theta \cos \theta & \cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta & \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{array}
$$

Example 1: Simplify

$$
\begin{aligned}
\frac{2}{1-\cos 4 x} & =\frac{2}{2 \sin ^{2} A} \\
\frac{2}{1-\cos 2(2 x)} & =\frac{1}{\sin ^{2} A} \\
\frac{2}{1-\cos 2 A} & =\frac{1}{\sin ^{2}(2 x)}
\end{aligned}
$$

Example 2: Solve, $0 \leq x \leq 2 \pi$

$$
\begin{array}{lc}
\csc ^{2} x=2 \sec 2 x & -1!/ 2 / 2!-1 \\
\frac{1}{\sin ^{2} x}=\frac{2}{\cos 2 x} & \operatorname{Or}=\frac{\pi}{6} \\
\cos 2 x=2 \sin ^{2} x & \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \\
1-2 \sin ^{2} x=2 \sin ^{2} x & \\
1=4 \sin ^{2} x & \\
\sin ^{2} x=\frac{1}{4} & \\
\sin x= \pm \frac{1}{2} &
\end{array}
$$

Example 3: Prove:

$$
L H S=R H S
$$

Assignment p. 340 \#1-5 (as many as needed)

